Supplementary information

Multimodality of critical strength for incipient plasticity in L1₂- precipitated (CoCrNi)₉₄Al₃Ti₃ medium-entropy alloy: coherent interface-facilitated dislocation nucleation

Qian Zhang ^{a,b}, Junwei Qiao ^{a,*}, Yakai Zhao ^{c,*}, Jae-il Jang ^d, and Upadrasta Ramamurty ^{b,c}

^a Laboratory of High-Entropy Alloys, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.

^b School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore.

^c Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore.

^d Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea.

Fig. S1. Variations of the area fraction f and radius r of the L1₂ phase with aging time t in the (CoCrNi)₉₄Al₃Ti₃ alloy.

Fig. S2. Variations of Vickers hardness with aging time t in the (CoCrNi)94Al₃Ti₃

alloy.

Fig. S3. Variations of yield strength (YS) with aging time *t* in the (CoCrNi)₉₄Al₃Ti₃ alloy. The results were obtained using indentation plastometry.

Aging time, t	Er (GPa)	E (GPa)	G (GPa)
(mins)			
0	249	289	111
1	254	297	114
6	254	297	114
18	245	284	109
60	246	285	110
180	245	284	109
600	247	286	110
6000	244	282	108

Table S1. Reduced modulus E_r , elastic modulus E and shear modulus G of $(CoCrNi)_{94}Al_3Ti_3$ alloy. The results were achieved assuming Poisson's ratio v = 0.3.

Table S2. Chemical composition (at.%) of L1₂ phase in the (CoCrNi)₉₄Al₃Ti₃ alloy aged for different times (Measured by TEM equipped with an EDS).

	Chemical composition (at.%)						
Aging time (mins)	Co	Cr	Ni	Al	Ti		
6	24.33	16.47	48.06	3.55	7.59		
60	20.79	10.50	52.84	4.65	11.24		
600	16.58	3.71	58.61	5.78	15.32		
6000	17.19	3.34	60.45	4.86	14.16		