
Full length article

Multimodality of critical strength for incipient plasticity in  
L12- precipitated (CoCrNi)94Al3Ti3 medium-entropy alloy: Coherent 
interface-facilitated dislocation nucleation

Qian Zhang a,b , Junwei Qiao a,*, Yakai Zhao c,* , Jae-il Jang d , Upadrasta Ramamurty b,c

a Laboratory of High-Entropy Alloys, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
b School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
c Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
d Division of Materials Science and Engineering, Hanyang University, Seoul 04763, South Korea

A R T I C L E  I N F O

Keywords:
Medium-entropy alloy
Coherent L12 phase
Nanoindentation
Incipient plasticity
Dislocation nucleation mechanisms

A B S T R A C T

The stochastic nature of the incipient plasticity in (CoCrNi)94Al3Ti3 medium-entropy alloy (MEA) precipitation- 
hardened by L12 phase of various sizes is explored systematically by nanoindentation. As the L12 phase 
continuously coarsens during aging (with an average radius varying from 3 to 82 nm), the critical strength for 
incipient plasticity, τy, measured with a small radius tip unexpectedly decreases first and then increases, attaining 
its minimum when the aging time t = 60 mins. The distributions of τy for all samples are intrinsically multimodal, 
indicating the co-existence of different dislocation nucleation mechanisms. Specifically, a trimodal distribution is 
found for the samples in the homogenized state and aged up to 18 mins, whereas the strength distributions in the 
samples aged for 60 mins and more is bimodal. Considering the size of the stressed volume during the inden-
tation and the inter-spacing between various crystalline defects (dislocations, monovacancies, divacancies, and 
coherent phase interfaces), the potential deformation mechanisms in all aged samples were ascertained to 
include monovacancy-induced heterogeneous dislocation nucleation in the matrix near and far from the pre-
cipitate/matrix interface, interface-assisted heterogeneous dislocation nucleation, as well as homogeneous 
dislocation nucleation (only for large L12 particles). Results suggest that the coherent phase interface can reduce 
the critical stress for dislocation nucleation and thus can act as a unique generator of dislocations, which depends 
on the inter-particle spacing and the size of L12 phase.

1. Introduction

A major drawback, in general, of the monophasic high entropy alloys 
(HEAs) with the face centered cubic (FCC) crystal structure is their 
relatively poor strength. Several different alloy design strategies are 
being employed for overcoming this limitation, precipitation hardening 
being the most prominent. HEAs with high density of nanoscale pre-
cipitates have been shown to achieve ultrahigh strength while main-
taining large ductility [1–6]. For example, He et al. [7] reported that 
(FeCoNiCr)94Ti2Al4 (at.%) HEA reinforced by coherent nanoscale par-
ticles with the L12 crystal structure exhibit a tensile strength of ~1.3 GPa 
with a tensile elongation of 17 %. In another work [8], alloying with the 
minor quantities of Al and Ti was demonstrated to enhance the yield and 
tensile strengths of L12-strengthened CoCrNi-based medium-entropy 

alloy (MEA) by ~70 % and ~44 % respectively, while maintaining a 
ductility of ~45 %. It is suggested that, in addition to serving as ob-
stacles to dislocation motion, the coherent nanoscale L12 precipitates 
can also act as generators of mobile dislocations [9]. Compared with the 
monophasic HEAs, such precipitates will introduce coherent phase in-
terfaces into the crystal lattice. Whether the coherency strains associated 
with them will lower the activation energy for dislocation nucleation 
sufficiently is a question that has not been experimentally addressed.

For detecting and understanding the nucleation of dislocations, 
nanoindentation technology that probes small-scale mechanical 
behavior [10] and can identify the sub-micron-scale incipient plasticity 
of the alloy is probably the most appropriate method. When the nano-
indentation is performed with an indenter with small tip radius, the 
elastic to elastoplastic transition can be precisely captured through the 
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load at the first displacement burst (or pop-in) on the load-displacement 
(P-h) curve measured under the load control mode [11–14]. If the alloy 
is completely annealed, the extremely-small contact radius (usually a 
few tens of nanometers) between the indenter and the sample when the 
first pop-in occurs makes the probability of encountering existing dis-
locations fairly slim [15]. In this case, the incipient plasticity is 
controlled by the nucleation of dislocations [16–19]. Benefit from the 
effective mechanical response detection at nanoscale, it is expected to 
derive the specific role of the coherent phase interface based on the 
evolution of the critical strength for incipient plasticity and its distri-
bution characteristics.

In general, the critical load, PI, that causes the first pop-in is statis-
tical in nature, and a detailed analysis of it can be used to understand the 
nature of the incipient plasticity. In most cases, such strength distribu-
tion in conventional metals (or even HEAs) is taken to be unimodal in 
nature [13,20–24]. This, implicitly, assumes that a single deformation 
mechanism is responsible for the occurrence of the first pop-in. For 
example, Zhu et al. [21] conducted incipient plasticity tests on CoCr-
FeMnNi HEA at different temperatures and stated that the 
vacancy-mediated heterogeneous dislocation nucleation mechanism is 
predominant. However more than one deformation mechanism may get 
activated during nanoindentation, which would result in bi- or 
multi-modal strength distributions. Zhao et al. [16,25] reported a 
bimodal feature in the pop-in stress distribution in CoCrFeNi and 
CoCrFeMnNi alloys. Their analysis of the experimental data suggests 
that when the indenter tip radius is sufficiently small, the first pop-in is 
controlled by monovacancy-assisted heterogeneous dislocation nucle-
ation and/or homogeneous dislocation nucleation. When a large radius 
tip is used, the deformation mechanisms transition to the activation of 
pre-existing dislocations and vacancy cluster/grain boundary assisted 
heterogeneous dislocation nucleation.

For examining the role of coherent interfaces on dislocation nucle-
ation, a small radius tip is preferred. In the stressed zone beneath the 
indenter, the types and distribution states of defects determine which 
nucleation mechanism will dictate the incipient plasticity characteris-
tics. Along with the coherent L12 phase precipitates, the crystallographic 
defects within the alloy such as vacancies, vacancy clusters, dislocations, 
coherent phase interfaces and grain boundaries, are all candidates that 
could influence the measured mechanical response. Amongst them, all 
the defects except the coherent interface make dislocation nucleation 
easier compared with that of the homogeneous dislocation nucleation in 
a perfect lattice [16,26,27]. Whether the coherent interface also exerts a 
similar influence on the dislocation nucleation is yet to be examined in 
detail. Keeping the above in view, we employ nanoindentation on a 
medium entropy alloy (MEA), (CoCrNi)94Al3Ti3 that was homogenized 
and then subjected precipitation aging treatment for varying time pe-
riods, for a detailed experimental examination of the role of precipitates 
and the interface between them and the matrix on the incipient 
plasticity.

2. Materials and experiments

The (CoCrNi)94Al3Ti3 alloy ingot used in this study was prepared by 
arc-melting of pure elements (purity ≥ 99.9 wt.%) in the required pro-
portion under a high-purity argon atmosphere and then casting the 
molten alloy into a copper crucible that was water-chilled. To ensure 
chemical homogeneity, the ingot was flipped and remelted at least four 
times and then drop-cast into a rectangular plate. Subsequently, the 
plate was hot rolled at 950 ◦C with a thickness reduction of 75 %. After 
grinding the oxide skin off the surface of the hot-rolled sheet, the sample 
was sealed in a quartz tube filled with high purity argon gas, and then 
homogenized at 1200 ◦C for 24 h, followed by water quenching. Finally, 
the sheet was cut into multiple small samples, and aged at 950 ◦C for 1, 
6, 18, 60, 180, 600, and 6000 mins (the time interval was selected based 
on Refs. [28,29]). Prior to the nanoindentation experiments, all the 
samples were mechanically polished and then electropolished in a 

mixture of 70 % methanol, 20 % glycerol, and 10 % perchloric acid in 
volume percent (vol.%) to remove any work-hardened surface layer.

X-ray diffraction (XRD, PANalytical AERIS) with Cu Kα radiation was 
utilized to investigate the phase(s) and lattice parameters. For the 
characterization of the coherent L12 phase in all the aged samples, 
transmission electron microscopy (TEM) analysis was performed using a 
FEI Talos F200X microscope operating at 200 kV. TEM samples were 
firstly mechanically ground to a thickness below 50 μm using SiC paper, 
then punched into 3 mm diameter discs. They were further thinned 
using the twin-jet electro-polishing (Struers Tenupol 5) technique in a 
HClO4:C2H6O = 1:9 solution with a voltage of ~15 V at a temperature of 
about − 25 ◦C.

Nanoindentation tests were performed using the Bruker TI Premier 
instrument equipped with a Berkovich tip. The tip radius was calibrated 
on a reference fused quartz sample based on Hertzian theory [30] to be 
~434 nm. All the tests were carried out at room temperature and in 
load-control mode, with a peak load, Pmax, of 480 μN and loading rate of 
60 μN/s. For obtaining large datasets that contain statistically significant 
data, 10 × 10 grid indentations were performed within three arbitrary 
grains on the surface of each sample, with a spacing of 5 μm in both 
horizontal and vertical directions. The grid edges were kept >20 μm 
away from the grain boundaries to avoid the nucleation of dislocations 
from them. In total, 290 load-displacement responses (at least) exhib-
iting clear first pop-in phenomena were obtained on each sample. 
Naghdi et al. [31] demonstrated that when a nanoindentation load is 
applied and held constant, further reorganization of local chemical 
ordering may occur within the alloy. This phenomenon was not 
considered here due to the arduous verification and the potentially 
negligible impact on the results of this paper. In order to understand the 
macroscopic mechanical properties, Vickers hardness and indentation 
plastometry tests were conducted. For Vickers hardness, peak load of 0.3 
kgf for a dwell time of 10 s was used. For the indentation plastometry, a 
commercial machine (Plastometrex PLX-Benchtop) was utilized which 
conducts spherical indentation test (spherical tip radius: 0.5 mm) and 
then finite element method (FEM) based on the surfacing profiling re-
sults of the indentation [32].

Fig. 1. XRD patterns of (CoCrNi)94Al3Ti3 alloy in homogenized (0 min) and 
aged states.
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3. Results

3.1. Microstructures

Fig. 1 shows the XRD plots of the (CoCrNi)94Al3Ti3 MEA that was 
aged to different times, t. All the samples show a single phase with the 

FCC crystal structure. The lattice constant, a, estimated from the 
diffraction peaks is nearly constant at ~3.58 Å in all the samples. The 
slight change in the intensities of the diffraction peak may be due to the 
fact that the detection area only involves a few grains (the grain sizes of 
all samples are greater than 100 μm).

Representative TEM images along with the respective selected area 
electron diffraction (SAED) patterns (obtained along the [112] zone 
axis) for the alloys aged to different t are presented in Fig. 2. The SAED 
pattern of the homogenized sample corresponds to that of a single FCC 
phase. In all the aged samples, however, additional spots can be 
observed, indicating the presence of L12 superlattice structure in them 
[8]. In Fig. 2, the dark-field TEM images (or high-angle annular 
dark-field (HAADF) images), which were obtained using the superlattice 
spots, reveal the corresponding precipitated L12 particles with various 
sizes. The ImageJ software (National Institutes of Health) [33,34] was 
employed to estimate the area fraction, f, and radius, r, of the L12 phase 
from such images. The values of f and r, as well as the number density, 
Nρ, and inter-particle spacing, λ, of the L12 phase are listed in Table 1. It 
shows that r increases from 2.89 nm at t = 1 min to 82.15 nm in the 
sample aged for 6000 mins, whereas the f value remains nearly un-
changed at ~8–11 %, (see Figure S1 in supplementary information, SI). 
Meanwhile, Nρ and λ sharply decreased and increased, respectively, with 
aging time. All these parametric changes with t indicate the coarsening 
process of L12 precipitates, as expected.

The coarsening process of L12 phase is driven by the interfacial free 
energy between the precipitate and the matrix, i.e., Ostwald ripening 

Fig. 2. SAED patterns with the [112] zone axis and TEM images of (CoCrNi)94Al3Ti3 alloy in homogenized (0 min) and aged states. The TEM images for 60, 180, and 
600 mins are dark-field images, whereas the rest are HAADF images.

Table 1 
The area fraction (f), radius (r), number density (Nρ), and inter-particle spacing 
(λ) of L12 phase in the (CoCrNi)94Al3Ti3 alloy after aging for different times.

Aging time, 
t (mins)

Area 
fraction, f 
(%)

Radius, r 
(nm)

Number 
density, Nρ 
(/μm2)

Inter-particle 
spacing, λ (nm)

1 9.39 ± 0.23 2.89 ±
0.60

3578.66 ±
1064.60

10.94 ± 4.43

6 9.22 ± 0.23 10.18 ±
1.82

283.19 ± 74.30 39.06 ± 13.4

18 9.21 ± 0.33 13.85 ±
2.85

152.83 ± 43.95 53.19 ± 20.64

60 8.16 ± 0.35 18.14 ±
3.10

78.93 ± 18.89 76.28 ± 22.70

180 8.60 ± 0.90 25.66 ±
5.88

41.58 ± 11.18 103.77 ± 38.04

600 8.79 ± 0.70 40.20 ±
9.81

17.31 ± 5.24 159.93 ± 67.03

6000 11.00 ± 0.46 82.15 ±
20.34

5.19 ± 1.72 274.72 ±
137.27
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[35]. The coarsening kinetics of the nanoscale L12 particles in conven-
tional FCC structured alloys have been extensively investigated, espe-
cially in Al alloys [36] and Ni-base superalloys [37–40]. As per the 
Lifshitz-Slyozov-Wagner (LSW) theory, the Ostwald ripening process 
can be described as [41–43]: 

r3(t) − r3(t0) = k(t − t0) (1) 

where r(t) is the average radius of the particles after being aged for a 
duration of t, and k is the coarsening rate constant. Fig. 3 shows the 
variation of r with t, and the fit of Eq. (1) into the data. The value k from 
the best fit is determined to be 1.55 × 10− 26 m3/s, which is ~2–4 orders 
of magnitude higher than those reported for (CoCrxNi)94Al3Ti3 (x = 0.1, 
0.2 and 0.4) alloys that are aged at lower temperatures (750 ◦C) [43,44] 
compared to the higher aging temperature of the present study (950 ◦C).

High-resolution TEM (HRTEM) images of the precipitate-matrix in-
terfaces for a few representative samples (t = 6, 60, and 600 mins), along 

with the Fast Fourier transformation (FFT) patterns of the matrix and 
L12 phases, are displayed in Fig. 4. It is seen that the precipitates and the 
matrix have coherent interfaces. The lattice mismatch, δ, between them 
can be expressed as [45,46]: 

δ =
2(ap − am)

ap + am (2) 

where ap and am are the lattice constants of the precipitate and the 
matrix, respectively. The values of ap and am estimated from the HRTEM 
images are 3.582 and 3.569 Å, respectively. They result in a fairly small 
computed δ value of 0.36 %, which is similar to that reported for the L12 
particles in (CoCrNi)92Al6Ta2 alloy (δ =0.31 %) [43].

3.2. Critical strength for incipient plasticity

In Fig. 5, all the representative P-h curves exhibit distinct discrete 
displacement bursts or ‘pop-ins’, with a wide distribution in the load at 
the first pop-in, PI. The Hertzian contact mechanics model [30] can be 
used to describe the elastic segment prior to the first pop-in, using the 
following the relation: 

P =
4
3
Er

̅̅̅̅̅̅̅̅̅
Rih3

√
(3) 

where Ri is the tip radius of the indenter, and Er is the reduced modulus 
that can be determined using the 1/Er =

(
1 − v2

i
)
/Ei +

(
1 − v2

s
)
/Es, 

where v is the Poisson’s ratio (=0.3, measured using the ultrasonic 
pulse-echo technique), E is the Young’s modulus, and the subscripts i 
and s stand for the indenter and sample, respectively. By fitting Eqn. (3)
into the P-h curves up to the first pop-in, the Er values are obtained. 
Variations of Er with t are plotted in Fig. 6. (In this figure and hereafter, 
the homogenized sample is represented with t = 1 s, since t = 0 cannot be 
plotted in a log scale). The Er, E, and shear modulus G data are given in 
Table S1 of the SI. It is noted from Fig. 6 that Er of the alloy does not vary 
in any significant manner with t and fluctuates marginally at ~248 GPa.

The shear strength corresponding to the onset of plasticity can be 
estimated as the maximum shear stress (that occurs at a depth of 
approximately 0.48 of the contact radius, ac, underneath the indenter 
tip) at the first pop-in load [30]: 

Fig. 3. LSW relationship illustrating the coarsening of the L12 phase in the aged 
(CoCrNi)94Al3Ti3 alloy.

Fig. 4. HRTEM images of (CoCrNi)94Al3Ti3 alloy after aging for 6, 60, and 600 mins show the L12-matrix interfaces, and FFT patterns of the two phases.
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τy =
0.47

π

(
4Er

3Ri

)2/3

PI
1/3 (4) 

Values of τy, including minimum, maximum, mean (τy), standard 
deviation (SD), and coefficient of variation (CoV) (defined as the ratio of 
standard deviation to the mean value) are summarized in Table 2. In all 
cases, the variation in the CoV values (ranging from 9 % to 13 %) is not 
significant. With an increasing t, τy first reduces, reaching a minimum at 
t = 60 mins, before increasing again. This trend is consistent across all 
the grain orientations studied, as demonstrated by the same trend 
observed in each orientation as shown in Fig. 7.

The statistical nature of τy is illustrated in Fig. 8, represented as 

Fig. 5. Representative load-displacement (P-h) curves of (CoCrNi)94Al3Ti3 alloy in homogenized state (0 min) and after aging for 6, 60, and 600 mins.

Fig. 6. The variation of the reduced modulus, Er, of (CoCrNi)94Al3Ti3 alloy with 
aging time t.

Table 2 
Summary of minimum, maximum, mean (τy), standard deviation (SD), and co-
efficient of variation (CoV) values of τy for all the samples.

τy (GPa)

Aging time (mins) Min. Max. τy SD CoV

0 4.79 8.18 7.23 0.71 10 %
1 5.34 8.26 7.12 0.64 9 %
6 5.16 8.25 6.71 0.68 10 %
18 4.44 8.80 6.34 0.85 13 %
60 4.33 7.77 6.00 0.67 11 %
180 4.63 8.15 6.70 0.70 10 %
600 4.70 8.28 6.69 0.68 10 %
6000 3.29 8.75 7.23 0.84 12 %

Fig. 7. The evolution of the τy with t for each test grain (color dots) and the 
overall (dark dots). Three colored dots of the same color represent three 
random grains of the same sample for testing.
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histograms and the kernel density estimate (KDE) plots [16,47,48]. In 
most cases, τy is bimodal in nature. In a few cases, it appears to be tri-
modal. To ascertain this, the obtained KDE plots are deconvoluted, 
assuming that each constituent distribution is also Gaussian in nature, 
represented as [16,18,19]: 

f
(
τy
)
=

1
S

̅̅̅̅̅̅
2π

√ exp
(

−

(
τy − τy

)2

2S2

)

(5) 

The deconvolution results are also plotted Fig. 8, using different 
colors with each color representing a different deformation mechanism 
that will be discussed later. The dashed straight lines of the same color 
represent the corresponding τy of each fitted peak. In the homogenized 
state, a trimodal distribution of τy is noted. This persists up to t = 18 
mins. For longer times of aging, i.e., for t ≥ 60 mins (and up to 6000 
mins), the distribution of τy is bimodal. The τy of the three fitted peaks in 
the homogenized sample are marked with green straight lines. For 
clarity, these peaks are labelled as A (or A’), B, and C from lower to 

higher stress levels. Note that only peaks B and C are present in the 
samples aged for 60–6000 mins. The τy and area fractions (AFs) of all the 
peaks for the samples to different t are listed in Table 3. As t increases, τy 

of peaks B and C increase after the initial decline, whereas that of peak A 
decreases until the peak disappears after aging for 60 mins or longer.

4. Discussion

4.1. Different defects and their distributions

The reported values of the critical resolved shear stress, τc, for 
dislocation glide in FCC HEAs (for example, they are ~33–60 MPa for 
CoCrFeMnNi [49,50]) are substantially smaller than the experimentally 
recorded minima irrespective of the aging condition for the (CoCr-
Ni)94Al3Ti3 alloy examined in this study. This observation leads us to 
conclude that the dislocation nucleation is the only possible mechanism 
responsible for the first pop-ins of the current study. The presence or 
absence of defects at the location (and the finite volume surrounding it) 

Fig. 8. Histograms, KDE plots, and deconvolution results by Gaussian distributions for the τy of homogenized (0 min) and aged samples. The deconvolution peaks 
with different colors represent different deformation mechanisms, which are named peaks A (or A’), B, and C, respectively. The vertical green lines mark the peak 
locations in the homogenized sample as a benchmarking reference for the curves of the aged samples.

Table 3 
The results of peak fitting based on Gaussian distribution.

Aging time (mins) Peak τy(GPa) AF Peak τy(GPa) AF Peak τy(GPa) AF

0 A’ 5.70 0.09 B 6.88 0.32 C 7.69 0.59
1 A 5.88 0.14 B 6.44 0.07 C 7.38 0.79
6 A 5.63 0.11 B 6.36 0.41 C 7.28 0.48
18 A 5.11 0.18 B 5.82 0.08 C 6.69 0.74
60    B 5.49 0.48 C 6.40 0.52
180    B 5.86 0.27 C 7.04 0.73
600    B 6.16 0.46 C 7.12 0.54
6000    B 7.04 0.41 C 7.57 0.59
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of the maximum shear stress underneath the indenter determines 
whether the dislocation nucleation occurs heterogeneously or homoge-
nously. To decipher these two mechanisms, it is essential to assess the 
densities of different defects and the spacings between them in the alloy.

In the prior research performed on the incipient plasticity of crys-
talline alloys, the defects that may cause the heterogeneous nucleation 
of dislocations have been identified as monovacancies, vacancy clusters, 
and dislocations [51]. Note that a coherent interface, as an important 
2-dimensional crystalline defect, will play the same role as the other 
defects, and its distribution parameters have been calculated above. The 
mean spacing between the pre-existing dislocations in well annealed 
metals would be ~1 μm (assuming a dislocation density is ~1012 m− 2 

[16,52]).
The thermodynamics of intrinsic point defects (vacancies) in pure 

metals follows the Arrhenius law: ρ1 = exp[ − u /kT], where ρ1 is the 
equilibrium concentration of the monovacancies, u is their formation 
energy, k is the Boltzmann constant, and T is the absolute temperature. 
Wang et al. derived the monovacancy equilibrium concentration in an 
equiatomic HEA as [53]: 

ρn =
exp

(
n − 1 − un

kT

)

n + exp
(

n − 1 − un
kT

) (6) 

where n represents the number of principal elements in HEA and un is the 
formation energy of a vacancy in it. Assuming that the u does not change 
with the number of the components in the alloy, ρn/ρ1 can be expressed 
as [53]: 

ρn

ρ1
=

exp(n − 1)

n + exp
(

n − 1 − un
kT

) ≈
exp(n − 1)

n
(7) 

Because of the low contents of Al and Ti, the (CoCrNi)94Al3Ti3 alloy 
examined here can be considered as ternary HEA, i.e., n = 3.

The reported values of un in the CoCrFeMnNi HEAs range between 
~1.69 and 2.00 eV [54–57]. Chen et al. [54] estimated un of each 
element in the FeCoCrNi alloy using the first principles calculations, and 
then used the rule of mixtures to arrive at an un of 1.73 eV for CoCrNi 
HEA. Using this value for the current (CoCrNi)94Al3Ti3 in Eqn. (7), the 
concentration ρMonov and average spacing, lMonov =

[(1/ρMonov)/number of atoms percell]1/3
× a, of the monovacancy are 

obtained and listed in Table 4. It is seen that lMonov of the alloy at the 
homogenizing and aging temperatures (1200 and 950 ◦C, respectively) 
are 16 and 40 nm, respectively. (Although the nanoindentation experi-
ments are performed at room temperature (RT) and hence the inferences 
regarding the mechanical behavior all pertain that at RT, the vacancy 
concentrations correspond to those at high temperatures as it is 
implicitly assumed that they remain as the cooling rates to RT subse-
quent to homogenization or aging are relatively high.)

When two adjacent monovacancies form a divacancy, the number of 
missing bonds in the alloy will be reduced from 2z (for two independent 
monovacancies) to 2z− 1, where z is the coordination number. It is 
conceivable that the formation of divacancies will lower the internal 
energy of the alloy. Based on the binding energy between vacancies, U, 
the concentration of divacancies, ρDiv, can be written as [58] 

ρDiv =
z
2

ρ2
Monovexp

(
U
kT

)

(8) 

The value of U is typically taken as 0.2 eV [58]. The estimated values 
of ρDiv and average spacing lDiv of the divacancies are as following: at 
1200 ◦C, ρDiv = 2.57 × 10–10, lDiv = 355 nm; at 950 ◦C, ρDiv = 1.35 ×
10–12, lDiv = 2040 nm.

4.2. Dislocation nucleation mechanisms

The radius of the contact area between the indenter and the sample 
surface during nanoindentation, i.e., the contact radius, ac, can be 
expressed as [15]: 

ac =

(
3PIRi

4Er

)1/3

. (9) 

Using ac, the volume of the highly stressed zone underneath the 
indenter, Vs, can be estimated as Vs = πac

3 [13,21]. The values of ac 
corresponding to peaks A, B, and C for samples aged to different t are 
given in Table 5. The values range from 45 to 68 nm. On comparing with 
the estimated average spacing of mono- and di-vacancies in the ho-
mogenized sample (16 and 355 nm, respectively), it is reasonable to 
expect that the sources for heterogeneous dislocation nucleation can be 
either monovacancies or divacancies (with the latter occurring at a 
much reduced probability). In all the aged samples, however, disloca-
tion nucleation from monovacancies or coherent interfaces is possible, 
since the inter-spacings of both divacancies (~2 μm) and dislocations 
(~1 μm) are significantly larger than ac. In addition, some prior works 
reported in literature suggest that the first pop-in can also be triggered 
by homogeneous dislocation nucleation, but at a substantially higher 
stress that approaches the theoretical strength of a perfect crystal [11,
16,18,19,59]. For visualizing the dislocation nucleation mechanism 
responsible for each of the τy peaks observed in Fig. 8 and the effect of 
L12 phase with various sizes, the spacings of monovacancies, divacan-
cies, and L12 phases in (CoCrNi)94Al3Ti3 alloy, as well as the contact 
radius ac, the stressed volume (with respect to the location of the 
indenter tip) are schematically illustrated (but drawn to scale) in Fig. 9.

For the homogenized sample, τy of peak C is determined to be about 
G/14, which is in the range of the theoretical shear strength (G/30–G/5) 
[25,60]. This observation leads us to infer that this peak is caused by 
homogeneous dislocation nucleation, when the indentation is made on a 

Table 4 
Summary of the vacancy formation energy un reported in the literature and the 
estimated results of the concentration and average spacing of monovacancy and 
divacancy at 1200 and 950 ◦C.

un (eV) T ( ◦C) ρMonov lMonov (nm) ρDiv lDiv (nm)

1.73 [54] 1200 2.97 × 10–6 16 2.57 × 10–10 355
 950 1.83 × 10–7 40 1.35 × 10–12 2040

Table 5 
Summary of τy values, contact radius ac and corresponding dislocation nucle-
ation mechanism of all fitting peaks for all the samples. Where ‘Homo’ denotes 
homogeneous nucleation, ‘Hetero’ denotes heterogeneous nucleation, ‘in-
terfaces’ and ‘matrix’ indicate the location of the nucleation sites.

Aging time 
(mins)

Peak τy(GPa) ac 

(nm)
Mechanisms

0 A’ 5.70 50 Hetero-divacancies
 B 6.88 60 Hetero-monovacancies
 C 7.69 67 Homo
1 A 5.88 50 Hetero-monovacancies 

(interfaces)
 B 6.44 55 Hetero-monovacancies (matrix)
 C 7.38 63 Hetero (interfaces)
6 A 5.63 48 Hetero-monovacancies 

(interfaces)
 B 6.36 54 Hetero-monovacancies (matrix)
 C 7.28 62 Hetero (interfaces)
18 A 5.11 45 Hetero-monovacancies 

(interfaces)
 B 5.82 52 Hetero-monovacancies (matrix)
 C 6.69 59 Hetero (interfaces)
60 B 5.49 49 Hetero-monovacancies
 C 6.40 57 Homo or Hetero (interfaces)
180 B 5.86 52 Hetero-monovacancies
 C 7.04 63 Homo or Hetero (interfaces)
600 B 6.16 54 Hetero-monovacancies
 C 7.12 63 Homo or Hetero (interfaces)
6000 B 7.04 63 Hetero-monovacancies
 C 7.57 68 Homo or Hetero (interfaces)
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defect-free domain of the grain [15,16]. When it comes to peaks A’ and 
B, heterogeneous dislocation nucleation with different sources is likely 
to have taken place. As shown in Fig. 9, the range of ac is between 
~50–67 nm. When the sample is indented, the probability of the stressed 
volume containing a divacancy is ~0.14, while several monovacancies 
are most likely to be present within the stressed volume. Furthermore, 
the lattice distortion induced by divacancies is more severe (compared 
to that caused by a monovacancy). This may lower the τc required for 
triggering the first pop-in more significantly than that by monovacancy 
[61]. On this basis, we hypothesize that the peak A’ with the lowest τy, 
which also has the lowest area fraction in the τy distribution, is likely 
caused by the divacancy-induced heterogeneous nucleation mechanism. 
Consequently, peak B is possibly due to the monovacancy-induced het-
erogeneous nucleation mechanism.

Upon aging, the average spacing between the divacancies increases 
substantially to 2040 nm, lowering the probability of a divacancy being 
present in the highly stressed volume to ~0.02. Additionally, the pres-
ence of divacancies in the stressed volume does not necessarily lead to 
heterogeneous nucleation, due to the inhomogeneous distribution of the 
applied stress underneath the indenter. Therefore, divacancy-induced 
dislocation nucleation is highly unlikely in the aged samples. On the 
other hand, the mean spacing between monovacancies, which also in-
creases but only to 40 nm, remains smaller than ac. Thus, the mono-
vacancies remain as the major sources for heterogeneous dislocation 
nucleation in all the aged samples.

When the size of L12 phase is small (for t = 1 to 18 mins), the 
combination of high Nρ and low λ determines that the stressed material 
volume should contain several monovacancies and L12 phases, as shown 
in Fig. 9. For the peak C of these samples, τy is around G/16–G/15, 
suggesting heterogeneous dislocation nucleation induced by coherent 

interface. Driven by the lattice mismatch of the interfaces between the 
L12 phase and the matrix, the stress required for the dislocation nucle-
ation near the coherent interface is likely to be reduced [9,62]. The 
coherent interfaces preserve the continuity of the lattice structure, and 
the tiny lattice distortion determines the slight decrease of the τy for 
peak C compared to the homogenized sample (~G/14). Since the 
monovacancies also have a high probability of appearing near the 
coherent interfaces [63], which is aided by the lattice mismatch, dislo-
cation nucleation at the monovacancies near the interfaces is easier than 
that in the matrix (far away from the interfaces). Therefore, peak A, with 
the lowest τy, probably stems from a monovacancy-induced heteroge-
neous dislocation nucleation near the precipitate/matrix interface. 
Then, peak B is probably mediated by the monovacancy-induced het-
erogeneous dislocation nucleation far from the interface.

As the L12 phase continues to coarsen (t = 60 to 6000 mins), as 
shown in Fig. 9, the number density of the coherent interface in the 
stressed zone underneath the indenter decreases sharply. This, in turn, 
markedly reduces the likelihood of finding monovacancies that are 
located near the precipitate/matrix interfaces within the stressed vol-
ume. This results in the disappearance of peak A for these samples. 
Moreover, compared with the aged samples for t up to 18 mins discussed 
above, the distribution of the monovacancies shows no significant dif-
ference, but the population of the interfaces in the stressed zone de-
creases. Based on this, we hypothesize that the peak B is likely to be 
governed by monovacancy-induced heterogeneous nucleation, and peak 
C is dominated by homogeneous nucleation in the matrix or heteroge-
neous nucleation with the assistance of the coherent interfaces, 
depending on the location of the indentation (with respect to the nearest 
interface) and the spacing between the precipitates. For all the samples, 
identical deformation mechanisms are marked with the same color 

Fig. 9. Distribution diagram of monovacancies, divacancies and L12 phases in (CoCrNi)94Al3Ti3 alloy under indenter after homogenization and aging for different t, 
where the average spacing of defects, the r and L of L12 phase, the contact radius ac, the volume of stressed zone Vs, and the penetration depth of the indenter are 
reduced proportionally. (Note that the scales of 600 and 6000 mins are different from others.).
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(homogeneous nucleation and coherent interface-induced heteroge-
neous nucleation are marked with the same color), as shown in Fig. 8. 
The values of τy, ac, and the inferred deformation mechanism for each 
deconvolution peak are also presented in Table 5.

4.3. The effect of L12 phase coarsening on the critical strength for 
incipient plasticity

The aforementioned results demonstrate that, in the L12-precipitated 
(CoCrNi)94Al3Ti3 alloy, dislocation nucleation preferentially occurs at or 
near the coherent interfaces of the precipitates and the matrix, due to the 
lower activation stress required, which is consistent with the atomistic 
simulation results reported in the literature [9]. It appears, however, 
that the size of the L12 phase exerts a distinct effect on the dislocation 
nucleation mechanism, as reflected by the different τy values of the same 
peak in different aged samples. In the initial stages of aging, i.e., when t 
is between 1 and 18 mins, τy decreases with t, where for larger t (60 to 
6000 mins) τy increases. This results in τy being the lowest in the samples 
aged for 60 mins, suggesting that the dislocation nucleation in it is the 
easiest and hence, possibly the most promising for exhibiting large 
plasticity [9]. In the following discussion, the evolutionary character-
istics of τy with aging for peaks A, B, and C are divided into five seg-
ments, as marked in Fig. 10. Since only the peak A’ of the homogenized 
sample is induced by the divacancies, it is not included in Segment 1.

As mentioned above, the coherent interfaces can serve as dislocation 
sources, governed by the lattice mismatch (δ = 0.36 %) between the 
precipitates and the matrix. The lattice mismatch amplifies the distor-
tional strains at the interface, which can aid in the reduction of the 
activation energy barrier for dislocation nucleation [9]. Results of the 
current study indicate that the misfit strain required to activate the 
dislocation nucleation may be related to the size of the precipitates. The 
larger the size of the L12 phase, the lower will be the barrier for the 
dislocation nucleation [9]. Note that this is only true for cases where 
there are sufficient number of the coherent interfaces in the highly 
stressed volume underneath the indenter. In the samples aged up to 18 
mins, the density of the coherent interfaces in the stressed zone is large 
(see Fig. 9). Therefore, both the τy of Segment 1, which is dominated by 
the monovacancy-induced heterogeneous nucleation near the coherent 

interface, and that of the Segment 4, which is governed by the coherent 
interface-assisted heterogeneous dislocation nucleation, exhibit a 
downward trend with the growth of L12 phase.

Since Segment 2 is governed by the monovacancy-induced hetero-
geneous dislocation nucleation within the matrix, the precipitate/matrix 
interfaces would have no role to play in determining τy. The precipita-
tion process during aging is accompanied by the diffusion of certain 
elements to the L12 phase [37,41]. For example, the L12 phase in the 
(CoCrNi)94Al3Ti3 alloy was shown to be (Ni, Co, Cr)3(Ti, Al)-type and is 
rich in Ni, Al, and Ti elements [8]. Table S2 in the SI gives the measured 
chemical compositions of L12 phase by TEM equipped with an energy 
dispersive X-ray spectrometer (EDS) after aging for 6, 60, 600, and 6000 
mins. It shows that the precipitates get enriched in Ni and Ti, while 
getting depleted in Co and Cr, as they coarsen (the variations in the Al 
content are within the scatter). The compositional alterations of the L12 
phase may exert a pronounced influence on the yield stress and the 
reduced modulus of the alloy, which can be delved into by molecular 
dynamics simulations [64]. Nevertheless, the absence of an applicable 
interatomic potential for the (CoCrNi)94Al3Ti3 alloy renders it arduous 
to conduct in-depth interpretations at present.

Here, if Co, Cr, and Ni are regarded as solvent atoms and Al and Ti 
are solute atoms, the strength enhancement due to the solid solution 
strengthening, Δσs, can be estimated using the relation [7,65,66]: 

Δσs = M⋅
G⋅ε3/2

s ⋅c1/2

700
(10) 

where c is the total molar ratio of Al and Ti in the matrix, M = 3.06 is the 
Taylor factor, and the interaction parameter εs is: 

εs =

⃒
⃒
⃒
⃒

εG

1 + 0.5εG
− 3εa

⃒
⃒
⃒
⃒ (11) 

which combines the effects of elastic and atomic size mismatches, i.e., εG 
and εa, which are defined as: 

εG =
1
G

∂G
∂c

(12) 

εa =
1
a

∂a
∂c

(13) 

εG is typically negligible compared to εa. The predicted trends in Δσs, 
made using the estimated values of εa, with t are presented in Fig. 11. 
The solute atoms in the matrix gradually decrease as the aging proceeds, 
which tends to lower the Δσs of the matrix and cause the τy of Segment 2 

Fig. 10. The evolution of τy with t for Peak A, B, and C. And it is divided into 
five segments according to their mechanism and the evolution trend of τy.

Fig. 11. Evolution of solid solution strengthening of matrix phase with t.
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to show a downward trend. Although the deformation mechanism of 
Segment 3 is the same as that of Segment 2 and is also affected by solid 
solution strengthening, these two segments show opposite trends with 
aging, implying that Segment 3 is more significantly affected by other 
factor(s).

After aging from 60 to 6000 mins, the radius of L12 phase increases 
from 18.14 to 82.15 nm. Since ac is in the range of ~49–68 nm, it is 
possible that the indenter may act directly above a large L12 phase ‘is-
land’ in these aged samples and the maximum shear stress, τmax, is 
exerted on its center, as illustrated in Fig. 12(a). In this case, the ultra-
high strength of the L12 phase makes it impossible for dislocations to 
nucleate internally [67]. Consequently, and for the occurrence of the 
first pop-in, the dislocations must nucleate near the interface or at the 

monovacancies in the matrix. To simplify, we analyze the stress distri-
bution on Plane A in Fig. 12 where the center of the L12 phase is located. 
In Fig. 12(b), a polar coordinate system is established with the phase 
center as the pole. From the center to the edge, the shear stress, τ, decay 
is inversely proportional to the radial distance [68–70]. When a mon-
ovacancy in the matrix is adjacent to the interface, as the external stress 
increases, τ at the monovacancy reaches the critical resolved shear stress 
for monovacancy-induced heterogeneous dislocation nucleation, 
τc− Monov, preferentially and thus the first pop-in takes place. When no 
defect is present, a much higher external stress (τc-Interf) that approaches 
the theoretical strength is required to initiate the heterogeneous dislo-
cation nucleation near the interface. For the same applied τmax, both 
τc− Monov and τc-Interf decrease with increasing L12 particle size. As a 

Fig. 12. (a) When the maximum shear stress at 0.48 ac directly under the indenter is at the center of a large L12 phase, (b) a schematic illustration of the change of 
shear stress along the polar diameter r in a polar coordinate system with the center of L12 phase as the pole on Plane A. τc-Interf represents the shear stress required for 
coherent interface-assisted heterogeneous dislocation nucleation, and τc− Monov represents the shear stress required for monovacancy-induced heterogeneous dislo-
cation nucleation.
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result, the critical load, PI, for the incipient plasticity increases with the 
coarsening of the L12 phase. This is also the reason why τy of both 
Segments 3 and 5 show upward trends. In addition, due to the huge 
spacing between L12 phases, the probability for the indentation being 
made only on the matrix is high, leading to the homogeneous dislocation 
nucleation inside the matrix. This possibility also contributes to the in-
crease in τy in Segment 5 with t.

4.4. Correlation between the microscopic and macroscopic plastic 
properties

Before closing, it is instructive to examine if the microscopic strength 
properties (specifically τy) and the inferences made using their sto-
chastic nature on the deformation mechanisms can be correlated to the 
macroscopic plastic properties. For this purpose, we conducted the 
Vickers hardness measurements as well as indentation plastometry 
analysis for estimating the tensile yield strength (YS) of the alloy sam-
ples that were aged to different extents. (Since the volumes of alloy 
samples are insufficient for conducting uniaxial tests, we estimated these 
properties by recourse to the indentation plastometry [25]. While 
cognizant of the fact that these properties thus estimated might not be 
accurate, we would like to highlight that the purpose is to only compare 
the trends with t and, in the process, attempt to connect the micro-scale 
incipient plasticity with the macro-scale properties.)

Precipitation of coherent second phases is an important strength-
ening mechanism for a wide range of alloys, including HEAs. Typically, 
the strength of the alloy that was in the supersaturated solid solution 
first increases with t, reaches a peak, and then decreases. The variation 
in the Vickers hardness with t, displayed in Fig. S2 of the SI, is consistent 
with such an expected general trend. The variation in YS, displayed in 
Fig. S3 of SI, with t is similar to that of Vickers hardness, as expected. The 
contrasting trends in the microscopic (τy) and macroscopic (hardness 
and YS) strength properties with t can be rationalized as following. First, 
it is important to recognize that the macroscopic properties reflect the 
mean field behavior of the alloy and encompass several different 
microstructural characteristics such as the grain size. Importantly, they 
involve the collective motion and multiplication of many dislocations. 
The incipient plasticity characteristics measured using nanoindentation, 
in contrast, are mainly concerned with the nucleation or the activation 
of existing dislocations, but only a few of them. In the context of the aged 
alloy, the macroscopic plastic behavior additionally depends on the size, 
shape, and distribution of the precipitate phase inside the alloy, while 
the microscopic strength depends on whether a single precipitate phase 
exists within the stressed zone and the nature of its interface with the 
matrix. The formation of the L12 phase during aging could exert 
different effects on the macroscopic yield strength and the pop-in stress, 
viz. enhancing the former and weakening the latter, as different mech-
anisms dominate the two processes. Similar scenarios have been re-
ported for the distinct changes in the macroscopic versus microscopic 
yielding strengths in the effects of pre-straining [15,71] and grain 
refinement [27].

5. Summary

The nanoindentation studies conducted in this work examined the 
stochastic nature of the incipient plasticity in (CoCrNi)94Al3Ti3 MEA 
that is precipitation hardened with the L12 phase of various sizes. As the 
average radius of L12 precipitate increases (from 3 to 82 nm) with aging, 
due to the Ostwald ripening, the critical strength for incipient plasticity, 
τy, first decreases and then increases, with the minimum occurring at t =
60 mins. The distributions of τy are multimodal in nature, or more 
specifically, trimodal for the samples in homogenized state and aged up 
to 18 mins, whereas bimodal for the samples aged for 60 mins and more. 
By considering relative sizes of the indentation contact radius and the 
inter-spacing between various defects (dislocations, and mono- and di- 

vacancies) and L12 precipitates, the underlying deformation mecha-
nisms for each of the deconvolution peaks in all the samples (homoge-
nized as well as aged) were ascertained. In the aged samples, the 
mechanisms include monovacancy-induced heterogeneous dislocation 
nucleation in the matrix near and far from the precipitate/matrix 
interface that is coherent, as well as interface-assisted heterogeneous 
dislocation nucleation. It is suggested that the coherent interface plays a 
key role by lowering the critical stress required for the dislocation 
nucleation and hence can act as a unique dislocation nucleation source. 
By optimizing the coherency strain at such interfaces, it might be 
possible to design alloys with simultaneously improved strength and 
ductility.
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