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Abstract: A theoretical model has been proposed to assess quantitative residual stress from a 

stress-induced shift in an indentation curve, but the assumption in this model of equibiaxial surface 

stress has obstructed its application to real structures in complex stress states. Thus we investigated 

the influence of non-equibiaxial surface stress on contact deformation through instrumented 

indentations of a biaxially strained steel plate in order to extend the model to a general surface stress 

by considering a ratio of two principal stresses. 

Introduction 

An instrumented indentation technique, developed to characterize the mechanical properties of 

small-volume materials [1-4], is adopted as a nondestructive stress-measurement method. Surface 

residual stress causes a shift in the indentation curve [5-9], and this is a crucial clue in stress analysis. 

Numerous studies [5,6] have attempted to derive an empirical relationship between the residual stress 

and the contact hardness as estimated from the instrumented indentation curve. However, the 

alteration of the contact hardness by the elastic residual stress is less than 10% of its value in the 

unstressed specimen [5], so that using the contact hardness as a residual-stress parameter is dubious. 

Tsui et al. [7], studying the influences of pre-existing surface stresses on indentation plasticity, 

reported that hardness was invariant regardless of the applied stress. Suresh and Giannakopoulos [8] 

defined the contributions of residual stress on plastic deformation as a differential contact stress, but 

this included a plastic deformation-independent hydrostatic stress. Lee and Kwon [9] explored stress 

interaction from the viewpoint of shear plasticity and proposed an optimized indentation model. This 

theoretical model, however, treats the pre-existing surface stress as a simple equibiaxial state, and tis 

impedes its application to complex stress states in actual structures. In this paper we investigate the 

influence of a non-equibiaxial surface stress on the indentation deformation. The instrumented 

indentation curves obtained from artificially simulated various stress states on a cross-shaped 

specimen were analyzed using the model of Lee and Kwon [9]. 

Experimental details 

The API X65 steel plate chosen for the study has elastic modulus 210 GPa, Poission�s ratio 0.3, and 

yield strength 490 MPa. The 15 mm thick cross-shaped specimen shown in Fig. 1(a) was machined 

and heat-treated at 600 °C for 2 h for stress relaxation, and then its surface was mechanically ground 

and polished with 0.5 µm alumina powder. In order to strain the cruciform specimen artificially, a 

stress-generating apparatus with two independent orthogonal loading axes (cross-sectional view) was 

designed. The specimen was tightened between the upper and lower jigs and was then biaxially 

loaded using the straining screws at the specimen ends (see Fig. 1(b)); the straining screws in the  
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upper jig created a tensile strain on the top surface whose magnitude was measured by the strain 

gages. 
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Fig. 1. Schematic diagrams: (a) cruciform specimen and (b) apparatus for artificial straining. 

The instrumented indentation tests were carried out using the AIS 3000R system made by Frontics, 

Inc. whose load and depth resolutions were 0.015 N and 0.1 µm, respectively. A multi-indentation 

method including loading, unloading and reloading cycles was adopted for the unstressed sample to 

gather much contact information on different load steps at once. Five indentations were repeated with 

indentation load steps 98, 196, and 294 N and indentation speed 0.2 mm/min. After testing in the 

unstressed state, six kinds of surface biaxial strain, including pure shear ( 0vx ���=� ), uniaxial 

( 0x �� , 0y =� ), equibiaxial ( 0vx ��=� ), and biaxial ( 0vx ���� ) states, were simulated on 

the specimen using the apparatus in Fig. 1(b). The orthogonal axial strains were converted to applied 

stresses using Young�s modulus and Poisson�s ratio. Single indentation tests were performed on the 

elastically bent specimen inside the indentation hole, where the gradient of the bending strain along 

the thickness is uniform. The indentation load and testing speed were 294 N and 0.2 mm/min, 

respectively. The instrumented indentation curves obtained from various biaxial stress states were 

superposed on that for the unstressed state to assess the shift in the indentation curve. 

Results and Discussion 

A representative indentation curve for the unstressed sample (solid circles in Fig. 2) was selected 

from the middle of the raw data. The maximum depth maxh  at the peak indentation load maxL  was 

68.70 ± 0.16 µm. The contact depth was calculated from the unloading part corresponding to each 

load step using Oliver-Pharr analysis [1]: 

S

L
72.0hh max

maxC �= ,                                                             (1) 

where Ch  is the contact depth and S  is the gradient of the tangent to the unloading curve at the 

maximum depth. The Vickers contact hardness, calculated by dividing maxL  by the contact area CA  

or 
2
Ch5.24 , was 2.85±0.16 GPa. The load dependency of the contact area is expressed as H/LAC =  

regardless of the stress state because hardness is independent of the elastic surface stress, according to 

previous research [7-9]. 

Two orthogonal stress components x�  and y�  created on the specimen are related to each other by 

a stress ratio �  or xy /�� ; the pure shear, uniaxial, and equibiaxial stress states correspond to �  

values of �1.0, 0, and +1.0, respectively (see Table 1). The instrumented indentation curves from 

biaxially stressed states are superposed on that of the unstressed state in Fig. 2. The stress-induced 

shift of the indentation load in the stressed state is explained as follows: the increase in the shear stress 

under tensile stress enhances indentation plasticity, thereby producing a lower indentation load than 

in the unstressed state. The amount of the shift in the indentation curve of the equibiaxial state from 

the unstressed state was about twice that of the uniaxially stressed state. While the curve shift in the 
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pure-shear state is negligible, the amount of the stress-induced load shift is linearly proportional to the 

applied average stress because the averaged effects of the surface biaxial stress are transmitted along a 

unique indenter column. 

Table 1. Artificially applied stress states on the cruciform specimen. 

Axial stress components [MPa] 
 

x�  (major) y�  (minor) 
Stress ratio �  Fitted loading curve 

State #1 -415 -414 1.0 (equibiaxial) L = 0.173h
1.78

 

State #2 -375 -248 0.66 (biaxial) L = 0.162h
1.79

 

State #3 -408 0 0 (uniaxial) L = 0.196h
1.74

 

State #4 -239 231 -0.97 (pure-shear) L = 0.146h
1.80

 

State #5 414 0 0 (uniaxial) L = 0.132h
1.81

 

State #6 428 427 1.0 (equibiaxial) L = 0.116h
1.83

 

Stress-free - - - L = 0.175h
1.75
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Fig. 2. Superposed indentation curves of the artificially stressed and unstressed states. 

In order to analyze the load shifts in Fig. 2 using the model in [9] for surface equibiaxial stress, 

equivalent equibiaxial states ( 2/)1( x
avg
y

avg
x ��+=�=� ) were extracted from the created biaxial 

stresses by averaging two orthogonal axial components. In the model in [9], the equivalent equibiaxial 

state was decomposed into a mean stress plus a plastic-deformation-sensitive shear deviator stress D
� . 

The stress-induced load shift was defined as a residual-stress-induced normal load resL  and was 

expressed as a product of the deviator-stress component parallel to the indentation axis 

3/)1( x
D
zz ��+�=�  and the contact area CA . Reversible recoveries of the contact deformation during 

depth-controlled stress relaxation were expressed as an integral equation [9]. In order to solve this 

equation, the applied stress was assumed to relax linearly and the response of CA  was expressed as 

H/L . Thus a final equation for the equivalent equibiaxial stress was found as Eq. (2) using the 

contact area of the tensilely stressed state 
T
CA : 

T
C

resavg
indent

A

L

2

3
�=� .                                                                              (2) 

The stress values avg
indent�  from Eq. (2) are compared with the applied average stress avg

appl�  in Table 2 

and show good agreement within a standard deviation of ±10.7 MPa. Two orthogonal stress 
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components were also calculated from the average stress estimated by the indentation model and �  

value; the major principal stress component x� was calculated from )1/(2 avg
indent �+� , and the minor 

principal stress component y�  by multiplying �  to the predetermined x� . The recalculated stress 

components in Table 2 also showed good agreement with the applied stress components in Table 1, 

except for the result for the pure-shear stress state. The large stress discrepancy in the pure-shear state 

was attributed to the negligible value of the stress-induced load shift (see Fig. 1) and the low 

sensitivity of the instrumented indentation technique to the small average stress near zero. 

Table 2. Stresses estimated from the indentation model and from the strain gage. 

Average stress, 
avg
indent�  [MPa] 

Average stress, 
avg
appl�  [MPa] 

x�  component 

[MPa] 

y�  component 

[MPa]  

(strain gage measure) (instrumented indentation model) 

State #1 -414.5 -407.8 ± 21.5 -408.3 ± 21.5 -407.3 ± 21.4 

State #2 -311.5 -303.3 ± 29.8 -365.1 ± 35.8 -241.5 ± 23.7 

State #3 -204.0 -187.4 ± 14.8 -374.7 ± 29.5 0 ± 0 

State #4 -4.0 -2.7 ± 36.5 -160.8 ± 2178.2 155.5 ± 2105.3 

State #5 207.0 205.3 ± 53.1 410. 6 ± 106.2 0 ± 0 

State #6 427.5 411.6 ± 74.0 412. 1± 74.1 411.1 ± 73.9 

Summary 

Instrumented indentation tests carried out on an artificially stressed cruciform specimen produced 

significant shape shifts in the indentation curves from that of the unstressed sample. The shift or 

difference in the indentation load in the stressed and unstressed states can be analyzed using an 

indentation model developed for the equibiaxial stress state. To do this, equivalent equibiaxial states 

were extracted from the created biaxial stresses by averaging two orthogonal axial stresses. The 

average stresses from the proposed indentation model agreed well with the applied average stresses. 

In addition, two principal stress components were calculated from the predetermined average stress 

by using the stress ratio � . 
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