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Abstract

We suggest a new instrumented indentation technique for estimating fracture toughness of ductile materials. This technique is based
on two key concepts. First, the indentation energy to the characteristic fracture initiation point during indentation may be closely related
to a material�s resistance to fracture, i.e., fracture toughness. Second, the characteristic fracture initiation point can be determined by
exploiting the basic concepts of continuum damage mechanics. To verify the applicability of the suggested technique, indentation tests
and conventional fracture toughness tests were performed on four ductile materials. The estimated fracture toughness values obtained
from the indentation technique showed good agreement (within approximately 10% error) with those from conventional fracture tough-
ness tests.
� 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Because fracture toughness, which indicates the resis-
tance to crack growth, is very important in assessing struc-
tural integrity, many methods for measuring it are now
detailed in many standards [1–3]. These standard methods
generally require specific specimen geometry (typically, sin-
gle-edge notched beam sample for three-point bending or
compact-tension specimen for tensile loading) and size. In
addition, the complex testing procedures (including fatigue
precracking and crack length measurement) must be well
controlled, thus making fracture toughness evaluation
quite difficult. Above all, current fracture toughness testing
methods cannot be directly applied to in-service industrial
structures due to their destructive nature.
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Because indentation techniques are relatively simple to
perform, they have been suggested as a way to alleviate
the drawbacks of current fracture toughness test methods.
Lawn et al. [4,5], using a simple relationship between frac-
ture toughness, radial crack length, and indentation load,
showed that the fracture toughness of a brittle material
could be measured by Vickers indentations. Recently, Byun
et al. [6] proposed an indentation energy to fracture (IEF)
model that relates indentation deformation energy to frac-
ture energy in order to estimate fracture toughness from
instrumented spherical indentation. However, these current
indentation techniques can be applied only to brittle mate-
rials with low fracture toughness (KIC 6 10 MPa(m)0.5) or
lower shelf energy level in the ductile–brittle transition tem-
perature region of ductile materials. Because indentation
does not induce severe cracking in ductile materials, esti-
mating fracture toughness in ductile materials by using
indentation is an issue as yet unsolved.
rights reserved.
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Fig. 1. Geometry of CTOD specimen used in this study.
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Here we suggest a new model for evaluating fracture
toughness of ductile materials using a spherical indentation
technique. Exploiting the finite element analysis observa-
tion that the stress triaxiality beneath the indenter is similar
to that ahead of the crack tip in a conventional fracture
toughness testing sample, we show that indentation defor-
mation energy to a certain indentation depth (which is a
characteristic fracture initiation point) can be correlated
with energy required for fracture in ductile materials. The
characteristic fracture initiation point was determined by
using concepts from continuum damage mechanics
(CDM). To verify the applicability of this new technique,
fracture toughness values of four ductile structural steels
were estimated and compared with those from a standard
crack tip opening displacement (CTOD) test, one of the
most popular standard methods for evaluating the fracture
toughness of ductile materials [1–3].

2. Preliminary finite element simulation

In the cracked (or notched) specimens, a local constraint
force characterizes the stress and strain fields around the
crack tip (or notch root). The effects of constraint or stress
state on fracture have been emphasized in many studies
[7–11] since it has been found that fracture toughness
decreases with increasing degree of constraint. One of the
most popular ways to quantify the out-of-plane constraint
effect is to evaluate the stress triaxiality, which is usually
defined as the ratio of mean stress (rm) to the equivalent
stress (req) [7,12]

t ¼ rm

req

; ð1Þ

where the mean stress and equivalent stress are defined,
respectively, as

rm ¼ r1 þ r2 þ r3

3
; ð2Þ

req ¼
1ffiffiffi
2

p ðr1 � r2Þ2 þ ðr2 � r3Þ2 þ ðr3 � r1Þ2
h i1

2

; ð3Þ

where r1, r2 and r3 are the principal stress components in
the radial, circumferential and axial directions, respec-
tively. To identify stress triaxialities of both crack tip and
indenter tip, preliminary finite element simulations were
performed using the commercial software ABAQUS.

Fig. 1 shows the geometry of a single-edge-cracked
beam specimen for the CTOD test. In accordance with
the ASTM testing recommendation [1], both the thick-
ness-to-width (B/W) and crack length-to-width (a/W)
ratios were fixed at 0.5; the width was 18 mm. Its finite
element model has 2768 elements and 13,245 nodes with
symmetry conditions fully utilized for efficient computa-
tion. To avoid problems associated with incompressibility,
a reduced integration 20-node brick element (C3D20R
element in ABAQUS) was used for 3D calculations.
Twenty fans of elements surrounded the crack tip circum-
ferentially, and 10 elements along the thickness direction
were designed to resolve the stress gradient along the thick-
ness direction. The finite element simulation for the CTOD
test was set up under displacement-controlled conditions;
the maximum load was applied to reach the displacement
corresponding to the critical CTOD value (dIC) of the
specimen.

The indentation response was simulated by an axisym-
metric 2D model that can fully describe the indentation
response without the many meshes and complex calcula-
tions of a 3D model. A spherical indenter of 500 lm diam-
eter, 0.07 Poisson�s ratio and 600 GPa elastic modulus was
modeled. A total of 2411 four-node bilinear axisymmetric
elements were used for the indented solid. The mesh was
well tested for convergence and was determined to be
insensitive to far-field boundary conditions. Finite element
simulation for the indentation test was also set up under
displacement-controlled conditions, with loading to inden-
tation depth 150 lm and then unloading. The material used
was API X70 steel, whose yield strength, tensile strength,
Young�s modulus, and work-hardening exponent are
597 MPa, 789 MPa, 213 GPa, and 0.128, respectively.

The maximum stress triaxialities (tmax) ahead of the
crack tip could be calculated based on the finite element
simulation results for the CTOD test. Fig. 2(a) shows the
change in tmax along the displacements V in the loading
axis; Vmax is the maximum displacement of the upper jig,
i.e., the displacement corresponding to fracture toughness
(dIC). Through monomolecular growth fitting (see
Fig. 2(a)), it is shown that the triaxiality is about the value
of 2.3 at initial loading, and then nearly converges to about
3.0 as the load increases.

Fig. 2(b) shows the change in maximum stress triaxiality
(tmax) beneath the indenter, based on the finite element sim-
ulation result. As the indentation depth h increases, triaxi-
ality increases gradually and converges to about 3.2. As in
the crack tip case, monomolecular growth fitting between
the triaxiality and the ratio of indentation depth to indenter
radius (h/R) works excellently, showing that the value of
triaxiality is about 2.1 at initial loading and then converges
gradually to about 3.2 as the indentation load increases.

It is interesting that the change in triaxiality beneath the
indenter is very similar to that ahead of the crack tip, i.e.,
that the stress triaxialities in both cases are in the range



Fig. 2. Change in stress triaxiality with increasing deformation: (a) crack tip and (b) indenter tip.
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2.1–2.2 at initial loading and then converge to 3.0–3.2. This
observation suggests that the indentation deformation
energy per unit area absorbed to critical indentation depth
may be similar to the fracture energy required for fracture
initiation.

3. Theoretical model

3.1. Critical indentation energy model

For a crack of length 2a in an infinite plate, the fracture
toughness is given by [13]:

KJC ¼ rf

ffiffiffiffiffiffi
pa

p
; ð4Þ

where rf is the remote tensile stress at fracture. According
to Griffith theory, rf is given by [13]:

rf ¼
ffiffiffiffiffiffiffiffiffiffiffi
2Ewf

pa

r
; ð5Þ

where E is the elastic modulus and wf is energy per unit
area required to create a crack surface (or the deformation
region ahead of crack tip). Combining Eqs. (4) and (5), the
relationship between wf and KJC becomes

KJC ¼
ffiffiffiffiffiffiffiffiffiffiffi
2Ewf

p
. ð6Þ

Although Eqs. (4) and (5) apply only to a through crack in
an infinite plate, Irwin [14] has proved that Eq. (6) is a gen-
eral relationship that can be applied to all configurations.

To estimate KJC via the indentation technique, wf must
be determined using only indentation parameters. We can
confirm from preliminary finite element simulation that
the triaxiality ahead of the indenter tip is in the range 2–
3 and that the degree of constraint in the deformed inden-
tation region is similar to that ahead of the crack tip. Hence
the indentation energy per unit contact area can be related
to wf if there exists a characteristic fracture initiation point
during the indentation process. This energy, henceforth
called the critical indentation energy, is calculated from
the indentation load–depth curve as follows:
2wf ¼ lim
h!h�

Z h

0

4L

pd2
dh; ð7Þ

where L is the applied indentation load, h the indentation
depth, d the hardness impression diameter, and h* the crit-
ical indentation depth corresponding to the characteristic
fracture initiation point. The term on the left (2wf) is the
energy for the formation of two crack surfaces. The follow-
ing section describes the determination of h* in detail.

3.2. Determination of h*

Since there is no distinguishable mark to identify frac-
ture during indentation, h* in Eq. (7) cannot be measured
by direct methods such as optical microscopy or scanning
electron microscopy (SEM). Thus, to determine h* indi-
rectly, we adopted concepts of CDM, which has been
widely used to predict failure in structures loaded statically
and dynamically. The seminal idea for this mechanics is
due to Kachanov [15], who introduced the damage variable
D defined in Eq. (8) and related to the surface density of
microdefects in the material:

D ¼ sD
s
; ð8Þ

where s and sD are, respectively, the cross-sectional area of
the loaded region and the reduced area due to microdefects.
In Eq. (8), D can be also represented by an elastic modulus
change using Lemaitre�s strain-equivalence principle [16]

D ¼ 1� ED

E
or ED ¼ Eð1� DÞ; ð9Þ

where ED and E are the elastic modulus of the damaged
and undamaged material, respectively. Thus, ED decreases
as the degree of damage in the material increases.

If we assume that possible damage (such as voids nucle-
ated in ductile material) beneath the indenter increases with
increasing indentation depth, ED can also decrease during
indentation. In this case, ED is represented with indenta-
tion parameters [17]:
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ED ¼ 1� m2

1
Er
� 1�m2

i

Ei

� � ¼ 1� m2

2
ffiffiffiffi
AC

pffiffi
p

p
S � 1�m2

i

Ei

� � ; ð10Þ

where m and mi are the Poisson�s ratios of the material and
indenter, respectively. Note that m is not affected by damage
accumulation [15,16]. Er is the reduced modulus, Ei is the
elastic modulus of the indenter, AC is the contact area be-
tween indenter and material, and S is the unloading slope.
The values of ED at various indentation depths can be cal-
culated at each unloading. Fig. 3 shows an example of ED

with h obtained from indentation. (We discuss this decrease
in ED with h in more detail in Section 5.1 below.) If a crit-
ical value of the damaged material elastic modulus (E�

D),
which is the damaged material elastic modulus at fracture
initiation, can be determined in Fig. 3, one can obtain h*,
i.e., the indentation depth at the fracture initiation point.

The value of E�
D can be determined from the critical

damage value (D*) through Eq. (9). The material beneath
the indenter experiences localized shear stresses due to
compressive indentation force in the loading axis. If the
shear stresses induce void nucleation, the void volume frac-
tion (f) may increase with increasing spherical indentation
load [18–20]. As the void volume fraction increases, sD
and thus D in Eq. (8) increase. By assuming that voids
are uniformly distributed with nearest-neighbor spacing l,
f and D can be calculated using the void radius (r). For a
cross-sectional area of one void pr2 per total area l2, D
can be described as pr2/l2, while for void volume 4pr3/3
per total volume l3, f can be given as (4pr3/3)/l3. By com-
bining these equations, D can be represented in terms of f
as

D ¼ p

4
3
p

� �2
3

f
2
3 or f ¼

4
3
p

p
3
2

D
3
2. ð11Þ

Thus, the critical damage value (D*) can be determined
if we know the critical void volume fraction (f*), which
means the value of f at the fracture initiation point. Numer-
ical analyses by Andersson [21] show f* @ 0.25 at the initi-
Fig. 3. Change in damaged material elastic modulus with indentation
depth.
ation of stable crack growth in ductile materials, and
Tvergaard and Needleman [22] has described the process
of stable crack growth from a modified Gurson model
[23] using this criterion. From these results, the value
f* = 0.25 may be employed here to determine the critical
value of the damaged material elastic modulus of a ductile
material, and thus its fracture initiation point during inden-
tation. (The validity of this f* = 0.25 is re-evaluated
through interrupted tensile testing in Section 5.2.) There-
fore, one may determine the critical damage variable D*
simply by putting the value of f* into Eq. (11); then the
value of E�

D can then be calculated from Eq. (9). Finally,
h* (required for calculating Eq. (7)) can be obtained as
the depth corresponding to the critical damaged material
elastic modulus E�

D.

4. Experimental details

To verify the applicability of this new model, the instru-
mented indentation tests were carried out on four commer-
cial-grade ductile materials, API X65, X70, ASME SA335
P12 and SA106 (these are widely used as structural steels;
their chemical compositions and mechanical properties
are listed in Table 1), using an AIS 3000R (Frontics, Inc.,
Seoul, Korea) whose load and depth resolution are
0.02 N and 0.10 lm, respectively. The maximum indenta-
tion depth was 150 lm and multiple loading–unloading
cycles were applied at 10 lm intervals using a 500 lm-
diameter ball indenter with mi = 0.07 and Ei = 600 GPa.
Both loading and unloading rates were fixed at 0.1 mm/
min. At least five sets of indentation data were obtained
from indentation tests for each material, and the average
value was used in analyzing the fracture toughness. In addi-
tion, after indentation testing, cross-sections beneath the
indenter tip were observed by SEM to verify damage accu-
mulation by voids. The cross-sections were obtained by
cutting along the center of the indenter impression.

For comparison, CTOD tests were performed on the
same materials according to ASTM E1290 [1]. The geome-
try and size of the specimen are the same as that used in the
preliminary finite element simulation. At least five tests
were done for each material, and the average value was
used as the representative fracture toughness.

In addition, interrupted tensile tests were done to obtain
the critical void volume fraction and critical elastic modu-
lus. Direct measurement of the void volume fraction in the
mechanically tested specimen is very difficult, since in
neither void observation nor calculation of the area occu-
pied by voids can the researcher�s subjective judgment be
excluded. Hence, we performed interrupted tensile tests,
and then each elastic modulus from unloading curves
was converted into void volume fraction. In particular,
the void volume fraction obtained from the elastic modu-
lus of the unloading curve at the onset of fracture in tensile
specimens is compared with the critical void volume
fraction proposed by Andersson [21] and Tvergaard and
Needleman [22].



Table 1
Chemical compositions and mechanical properties of ductile materials

Materials Components (wt.%)

C P Mn S Si Mo Cr Cu Ti Nb V Ni Fe

API X65 0.08 0.019 1.45 0.003 0.31 – – – – – – – Bal.
API X70 0.04 0.016 1.76 0.001 0.281 0.194 0.058 0.193 0.023 0.067 0.001 – Bal.
ASME SA335 P12 0.08 0.01 0.45 0.01 0.31 0.55 1.15 – – – – – Bal.
ASME SA106 0.35 0.009 1.06 0.025 0.10 0.03 0.40 0.13 – – 0.004 0.11 Bal.

Properties

YS (MPa) (true stress) UTS (MPa) (true stress) n K (MPa) E (GPa) dIC (mm) (obtained in this work)

API X65 441 623 0.169 868 210 0.54 ± 0.08
API X70 597 789 0.128 1056 213 0.66 ± 0.11
ASME SA335 P12 290 565 0.236 882 194 1.30 ± 0.14
ASME SA106 328 653 0.221 979 209 0.63 ± 0.08
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5. Results and discussions

5.1. Change in elastic modulus

The change in damaged material elastic modulus ED with
increasing indentation depth h was calculated from the
indentation unloading curves according to Eq. (10). Contact
stiffness was calculated by the Oliver–Pharr method [17],
while the contact area AC was determined by considering
the pile-up behavior around the indenter using Matthews�
method [24]. Fig. 3 shows the results for all materials used
here. It is clear that ED decreases with increasing depth.
To confirm the damage accumulation during indentation,
the region below the indentation was observed by SEM.
Some sample observations are shown in Fig. 4. We see that
(1) there are in fact voids beneath the indenter and (2) the
void volume fraction increases with increased depth. The
images in the figure show situations in which the indentation
load did not reach the damage threshold force (Fig. 4(a)),
cavity dislocations or voids initially nucleated (Fig. 4(b)),
voids grew (Fig. 4(c)), and a microcrack advanced to
approximately 10 lm (Fig. 4(d)). The initial void orienta-
tion is not orthogonal with respect to the indentation-load-
ing axis but is inclined to it at about 45�. As the applied load
increases, two wings emerged from the upper and lower
parts of the void and grew parallel to the loading axis.

Void formation even under compressive forces can be
explained by the dislocation pile-up model and angled
crack growth mechanism proposed by Zener [25] and Dys-
kin et al. [26], respectively. During spherical indentation,
the localized shear stresses beneath the indenter increase
with indentation load and enable dislocations to slip. On
slipping, dislocations frequently pile up on slip planes at
obstacles such as grain boundaries, second phases, or ses-
sile dislocations. The leading dislocation in the pile-up is
acted on not only by the applied shear stress but also by
interaction forces from the other dislocations in the pile-
ups, leading to a high stress concentration in the pile-up.
When many dislocations are contained in the pile-up, the
stress on the dislocation at the head of a pile-up can
approach the theoretical shear stress of material. At this
critical stress value, the dislocations at the head of the
pile-up are pushed so close together that they coalesce into
a wedge crack or cavity dislocation. Since the wedge crack
or cavity dislocation does not propagate immediately in
ductile metal, it can be regarded as a void.

As deformation beneath the indenter progresses, the size
and numbers of voids increase and the spacing between
them becomes smaller. Closer spacing causes voids to inter-
connect, and interconnecting voids enable a very small
microcrack of length only 1–2 lm to form (Fig. 4(c)). Since
a microcrack due to shear stress is inclined to the compres-
sive indentation-loading axis at approximately 45�, the tip
of the microcrack experiences tensile stress perpendicular
to the loading axis. The concentration of tensile stress at
the microcrack tip makes the microcrack grow. In addition,
microcrack growth progresses in the direction perpendicu-
lar to the concentrated tensile stress, showing maximum
stress intensity factor. The growing microcrack has two
symmetric (i.e., left and right wing) surfaces that are
equally favored for shear strain concentration at the tip.

5.2. Critical void volume fraction

We now return to the issue of f* = 0.25 as proposed by
Andersson [21] and Tvergaard and Needleman [22]. This
condition is very important simply because E�

D (and thus
h*) can be calculated by substituting f = f* in Eqs. (9)–
(11). To verify the value of the critical void volume frac-
tion, interrupted tensile tests were carried out on all the
ductile materials used in this study; the stress–strain curves
obtained are shown in Fig. 5. The unloading and reloading
paths seem to overlap exactly for each interruption, but
increasing the magnification of the figure, as in Fig. 6,
reveals clear hysteresis loops. Lemaitre and Chaboche
[27] and Bonora et al. [28] suggest that elastic modulus
should be measured from the unloading curve, because
the elastic modulus from the reloading curve may be under-
estimated due to back-stress relaxation [29]. In addition, to
exclude the nonlinear region of the unloading curve due to



Fig. 4. Cross-sectional SEM images of API X65 below indentation after (a) 10 lm, (b) 30 lm, (c) 70 lm and (d) 140 lm indentation.

Fig. 5. Interrupted tensile curves of (a) API X65 and X70, and (b) SA335 P12 and SA106.
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the back-stress relaxation or unloading delay time from
machine sensitivity, only the linear region was fitted after
eliminating its lower and upper 20%.

Damaged elastic moduli obtained from the interrupted
tensile tests were converted to damage variable D using
Eqs. (9)–(11). Fig. 7(a) and (b) show the changes in the dam-
aged material elastic modulus and damage variable with the
maximum principal engineering strain (eI): as eI increases,
ED decreases while D increases. This damage accumulation
with increasing strain can be described by the following
equation, derived by Bonora [30] based on a kinetic law
of damage evolution for ductile materials [15,16]:
D ¼ D0 þ ðDcr � D0Þ 1� 1� lnðe=ethÞ
lnðecr=ethÞ

� 	a
 �
; ð12Þ

where a is a damage exponent characteristic of the mate-
rial, D0 the initial damage and Dcr damage at failure, and
e, eth and ecr are the applied strain, damage threshold strain
and strain at failure, respectively.

The damage evolution law in Eq. (12) is character-
ized by a large number of small voids that nucleate
around the included particles when the threshold strain
is reached. When the strain increases, the existing void
dimension remains almost constant while more new voids



Fig. 6. Enlarged curves from interrupted tensile tests.
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are nucleated. In the loaded region of the material, dam-
age accumulates rapidly with the increasing strain because
of the formation of very large numbers of microvoids.
Once this process is saturated, with consequent reduction
of void spacing, increasing strain results in the sudden
coalescence of voids and failure of the material. In Eq.
(12), Dcr is the value calculated by substituting the elastic
Fig. 7. Changes in (a) damaged elastic modulus, (b) damage va
modulus obtained from unloading data at fracture on the
interrupted tensile curve into Eq. (9), and is the same as
D*. The true strain e can be replaced by ln(1 + eI), using
the relationship between the true strain and the engineer-
ing strain. If the bond between the matrix and the particle
is weak, eth can be of the same order of magnitude as the
matrix elastic strain at the proportional limit, and exact
determination is difficult. But if extensive plastic flow
occurs prior to damage, eth can be identified accurately
[30,31]. Since damage accumulates soon after yielding in
the present work, eth can be approximated as the yield
strain of each material. Assuming that the virgin material
has no damage, D0 is equal to zero. Using data obtained
from the interrupted tensile test, we obtain the value of a
by fitting ln(Dcr–D0) vs. ln[ln(ecr/eth)] in the following
equation of Bonora [30]:

ðDcr � D0Þ1=a ¼
1

a
K2

2ES0

ln
ecr
eth

� �
; ð13Þ

where K is the strength coefficient and S0 is a material
constant.

In addition to the damage variable–strain relationship
experimentally measured by interrupted tensile tests, the
relations calculated with Eqs. (12) and (13) are also
riable and (c) void volume fraction with increasing strain.



Fig. 8. Relation between lnh and lnED for API X70.
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shown in Fig. 7(b). The calculated results are in good
agreement with experimental results for the low-strain
regime (i.e., damage initially increases rapidly). After
some strain, however, the experimental damage values
are much higher than those theoretically calculated
according to the damage evolution law (Eqs. (12) and
(13)).

This difference between the theoretical value of damage
and the experimental value can be explained by the stress
triaxiality due to the necking behavior. Eq. (12) was
derived simply by assuming uniaxial tensile loading. How-
ever, when plastic strain reaches uniform elongation or ten-
sile load reaches maximum load, necking generally occurs.
The formation of a neck introduces a complex triaxial state
of stress since the neck plays the role of a mild notch.
Hence, taking into account this triaxial state of stress,
Eq. (12) should be modified as [30]:

D ¼ D0 þ ðDcr � D0Þ 1� 1� lnðp=pthÞ
lnðecr=ethÞ

f
rm

req

� �� 	a
 �
and

f
rm

req

� �
¼ 2

3
ð1þ mÞ þ 3ð1� 2mÞ rm

req

� �2

; ð14Þ

where p is accumulated plastic strain and pth is accumu-
lated plastic strain at the damage threshold. Since many
studies [30–32] have confirmed the validity of Eq. (14),
one might expect that the stress triaxiality correction can
considerably reduce the difference between experimental
and calculated results in Fig. 7(b).

Fig. 7(c) shows the change in void volume fraction (as
converted from experimental values of the damage variable
in Fig. 7(b) through Eq. (11)) with increasing strain. It is
seen that, as expected from Eq. (11), the fraction increases
as strain increases. It is noteworthy that, although the pat-
terns of increase in volume fraction were somewhat differ-
ent, the values of f at fracture became around 0.25–0.27 for
all the materials. This means that the void volume fraction
required to reach the fracture strain may be similar for all
ductile materials, and that value is about 0.25, as previous
studies proposed [21,22].
Fig. 9. Comparison of fracture toughness in CTOD tests and indentation
tests.
5.3. Verification

To assess the validity of our indentation technique for
estimating fracture toughness of ductile materials, fracture
toughness values estimated by the indentation tests were
compared with those from CTOD tests.

Here we show how to determine h* (needed for calculat-
ing Eq. (7)) for API X70 steel, one of the ductile materials
used in this work. Since f* = 0.25 has been shown to be a
reasonable condition for ductile fracture initiation, D*
can be determined as 0.48 by putting f* = 0.25 into Eq.
(11). The almost undamaged material elastic modulus
(which can be obtained from the first point in Fig. 3) of this
material is about 204 GPa. Although even the first point
might include damage, this 204 GPa is very close to the
undamaged value (213 GPa) obtained from tensile tests.
By Eq. (9), therefore, the elastic modulus corresponding
to D*, i.e., E�

D, becomes 106 GPa (= 204 · (1 � 0.48)).
Note that, for a ductile material such as X70, the critical
indentation depth h* corresponding to this E�

D cannot be
obtained directly from indentation tests (such as in
Fig. 3), and hence must be determined by extrapolation
of the proper fit of ED–h relations. Fig. 8 shows the relation
of lnh and lnED for X70 steel, whose fitting line shows
good linearity; the correlation factor of this fitting line
(R) is more than 0.98. From extrapolation of the lnh–lnED

fitting curve, the value of lnh* corresponding to ln E�
D

(ln106 (=4.67)) was determined as shown in Fig. 8. Finally,
we can estimate KJC values for all ductile materials used in
the present work through Eqs. (6) and (7) by using h* val-
ues determined in the same manner for each material.

Fig. 9 compares the fracture toughness KJC obtained
from the indentation technique and from conventional
CTOD tests. To convert from CTOD values to KJC, the fol-
lowing general equation was applied:



J.-S. Lee et al. / Acta Materialia 54 (2006) 1101–1109 1109
KJC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rYEdIC

p
; ð15Þ

where rY is the yield strength and dIC is the critical CTOD
value. In the figure, the mean value and standard deviation
of KJC from the model are indicated while mean values of
KJC from CTOD tests are seen. The KJC from indentation
tests have about 10% self-standard deviation, and there is
approximately 10% difference in the values between the
indentation tests and CTOD tests. However, if we take into
account that KJC values from CTOD tests include a stan-
dard deviation of more than 10% (see Table 1; this devia-
tion may arise because CTOD test is very sensitive to the
location of precrack tip), Fig. 9 shows good agreement in
KJC values between the indentation tests and CTOD tests.

The above results for ductile materials support the valid-
ity of the new indentation technique suggested here, and it
is expected that this technique can be applied to in situ esti-
mation of the fracture toughness of ductile structural steels
in a nondestructive way.
6. Conclusions

We propose a new instrumented indentation technique
for estimating fracture toughness of ductile materials, the
critical indentation energy model. It was shown that the
fracture energy in Griffith theory can be correlated with
the indentation energy to a characteristic fracture initiation
point based on the finite element simulation results (which
revealed that the degree of constraint ahead of indenter tip
is similar to that ahead of crack tip). The concept of critical
void volume fraction from continuum damage mechanics
(CDM) was introduced to determine a characteristic point
of fracture initiation during indentation. To verify this
technique, the fracture toughness of four ductile materials
was evaluated by both indentation and CTOD tests. The
experimental results show good agreement in KJC values
between indentation and CTOD tests, boding well for
future practical use of this technique.
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