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ABSTRACT
A heterostructuring strategy is an effective approach for abiding problems referred to as the
strength-ductility trade-off. However, tailoring the heterostructure is an arduous problem. This work
synthesized hierarchically heterogeneity by combining the eutectic high-entropy alloy (EHEA) and
medium-entropy alloy powders through novel powder metallurgy-based severe plastic deforma-
tion (P-SPD). EHEA forms nano-scaled heterogeneity composed of FCC and B2, and the mixture of
powder types forms micro-scale heterogeneity with hard and soft domains. This hierarchically het-
erogeneousmicrostructure leads to strong hetero-deformation-induced strengthening, achieving a
yield strength of ∼ 1.5 GPa. The present P-SPD represents the feasibility of heterostructuring, aiding
the development of HEAs.

IMPACT STATEMENT
A hierarchically heterogeneous microstructure comprised of the eutectic high-entropy alloy and
medium-entropy alloy was synthesized by the P-SPD procedures and achieved suprememechanical
properties attributed by hetero-deformation-induced strengthening.
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Introduction

Achieving a combination of high strength and ductil-
ity has been pursued by numerous metallurgists. Diverse
strategies such as alloy design, severe plastic deformation
(SPD), and heat treatment have been attempted. In con-
sidering the developing materials, the homogeneous
structures have been deemed optimized microstruc-
tures to avoid early fracture initiation at the domain
boundaries in the heterogeneous materials. However,
the advantages of heterostructuring to achieve high
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strength and reasonable ductility are emerging recently
[1–4]. Several studies reported synergetic strengthen-
ing to overcome the strength-ductility trade-off in het-
erostructures, such as harmonic, sandwich, gradient, and
layered structures [5–7]. However, tailoring heterostruc-
tures in the microscale as intended is still problematic.

Powder metallurgy (PM) is a facile manufacturing
method combining various powders, such as metals,
alloys, ceramics, and polymers [8]. The heterostructure
on a microscale can be manufactured by combining
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different types of powders. However, PM-processed
parts usually lack ductility under tension because of
pores, contaminations, and undesired phases formed
during mechanical alloying and high-temperature sin-
tering [9,10]. A novel PM-based fabrication route den-
sifies powders through the high-pressure torsion (HPT)
process at ambient temperature, leading to the utmost
densification [11,12]. Furthermore, the HPT process is
a well-known SPD technique, fabricating nano/ultrafine-
grained materials [13–16].

In this work, heterogeneous multi-materials with
medium-entropy alloy (MEA) and eutectic high-entropy
alloy (EHEA) are fabricated through the abovementioned
PM-based technique. As a single material, the achiev-
able mechanical properties of MEA are limited. And,
EHEApowder is too hard to be pre-compacted in powder
metallurgy. Therefore, the mixture of MEA and EHEA
can lead to a complementary relationship. EHEA acts
as a reinforcement material in MEA and MEA acts as a
binder material in EHEA. Consequently, hierarchically
heterogeneous microstructure and exceptional mechan-
ical properties of MEA-EHEA multi-materials were sys-
tematically investigated.

Materials andmethods

The CoCrFeNi MEA and AlCoCrFeNi2.1 EHEA pow-
derswere fabricated using gas atomization. The produced
powders were mixed in proportions targeting the 50 at%
of MEA and EHEA. The powders were pre-compacted at
a pressure of 40MPa tomanufacture a disk-shape sample
with a diameter of 10mm and a thickness of 1.2mm. The
pre-compacted disks were subjected to the HPT process
with a pressure of 5GPa for 4 turns at a rate of 1 rpm.
Then, the HPT-processed samples with a thickness of
0.8mm were annealed at 700 and 800 °C for 15 and
60min under anAr atmosphere. TheHPT-processed and
post-HPT annealed samples were denoted as As-HPT,
A715, A760, A815, and A860, respectively, according to
the annealing temperature and time.

Formicrostructural analysis, X-ray diffraction (XRD),
scanning transmission electron microscope (STEM) and
scanning electron microscopy (SEM) with backscatter
electron (BSE), energy-dispersive spectroscopy (EDS),
and electron backscatter diffraction (EBSD) detectors
were utilized. Furthermore, the synchrotron XRD char-
acterization was conducted at the 8D beamline of
the Pohang Accelerator Lab. Tensile tests and loading-
unloading-reloading (LUR) tests were performed on the
dog-bone-shaped samples with a gauge length of 1.5mm,
a thickness of 0.8mm, and a width of 0.7mm. The quasi-
static strain rate of 10−3 s−1 was used for the mechanical
tests. A precise tensile strain was taken by a digital image
correlation (DIC) method.

Results and discussion

In Figure 1(a-d), the BSEmicrographs and EDSmaps are
obtained in the spherical-shaped gas-atomizedMEA and
EHEA powders. There is no elemental segregation in the
MEA powder (Figure 1(b)), while the phase separation
between the Al-rich phase and Al-lean phase is observed
in the EHEA powder (Figure 1(d)). In AlCoCrFeNi2.1
EHEA, the phase separation from liquid to Al-lean
face-centered cubic (FCC) and Al-rich B2 structures is
reported at below ∼1320 °C [17]. Figure 1(e) exhibits an
overall cross-section of the as-HPT sample with a defect-
free structure. In detail, the magnified microstructure
of the as-HPT sample displays two domains elongated
along the HPT rotation direction (Figure 1(f)). The cor-
responding EDS maps in Figure 1(g) exhibit the Al-lean
MEA and Al-rich EHEA domains. Due to severe friction
stress during the HPT process, the interfaces between
MEA and EHEA powders are strongly bonded [11]. The
EDS line profile across the domain interface is shown in
Fig. S1. According to the distribution of Al, the diffu-
sion layer formed during the HPT process is less than
1 μm. Notably, the EHEA domain in the as-HPT sample
presents a segregation-free structure, unlike the start-
ing EHEA powder. To distinguish nano-scaled elemental
segregation, STEM analysis was performed. Figure 1(h)
exhibits a sound interface between the MEA and EHEA
domains without bonding defects. The SAED rings of
both domains are obtained from the selected regions (yel-
low region: MEA and red region: EHEA). The SAED
rings of theMEA domain indicate that the FCC structure
remains after the HPT process. Similarly, SAED rings
of the FCC phase are detected in the EHEA domain.
The fast Fourier transform (FFT) patterns from MEA
and EHEA also exhibit FCC structures (Figure 1(i, j)).
In other words, the B2 phase observed in starting EHEA
powder (Figure 1(c, d)) disappears after the HPT pro-
cessing, attributable to the dissolution of B2 phase under
SPD [18–20]. From the diameter of SAED rings, the
lattice parameters of the FCC phase in the MEA and
EHEA are calculated as 3.55 and 3.59 Å, respectively.
The dissolution of the B2 phase could be inferred by
the decreased diameter of SAED rings in EHEA com-
pared toMEA.The penetration ofAl elements in the FCC
matrix by the dissolution of B2 phase leads the larger lat-
tice parameters, shrinking the SAED rings. In addition,
the MEA and EHEA domains are refined as a nanocrys-
talline microstructure by the HPT process. The magni-
fied HR-TEM images of the MEA and EHEA domains
exhibit ultrafine-grained structures in Fig. S2. The grain
sizes of the MEA and EHEA are ∼29.4 and ∼25.3 nm,
respectively.

XRD spectra of all samples shown in Figure 2(a)
are consistent with the HR-TEM results. Initial MEA
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Figure 1. (a, c) SEM-BSE micrographs and (b, d) EDS maps of the gas-atomized (a, b) MEA powder and (c, d) EHEA powder, (e) the cross-
section SEM image of the As-HPT sample, (f ) SEM-BSE image of the As-HPT sample with (g) corresponding EDSmaps, (h) bright field TEM
micrographs of theMEA/EHEA interfacewith SAED ring patterns fromMEA and EHEA regions, andHR-TEMmicrographs ofMEA and EHEA
is shown in (i) and (j) accompanied by FFT patterns, respectively.

powders contain FCC single-phase, and EHEA powders
consist of FCC and B2 dual-phase (Figure 2(a)). How-
ever, the peaks related to the B2 phase are not detected in
the spectrum of the as-HPT sample, owing form the dis-
solution of B2 phase under severe HPT-induced strain.
Subsequent annealing on the HPT-processed samples is
conducted to tailor the microstructure to reach a good
combination of strength and ductility. The phase decom-
position to FCC and B2 phase occurs in all annealed
samples according to the B2 peaks detected at 2theta of
∼82°. After HPT processing, the dissolution of B2makes
a supersaturated FCC phase in the EHEA which is ther-
modynamically unstable [21]. Also, the diffusion process
is generally accelerated in severely deformed alloys due
to lattice defects [22]. Therefore, the post-HPT anneal-
ing, even for a short time, leads to the decomposition of
the supersaturated FCC matrix in the EHEA domains.
To verify the recrystallization behavior, EBSD and con-
volutional multiple whole profile (CMWP) analyses were

performed on the A715 sample (Fig. S3). Even with
the lowest annealing temperature and shortest anneal-
ing time, the A715 sample exhibitsed a low average KAM
value of ∼0.32° and dislocation density of 8.77× 1013

m−2, as determined from CMWP fitting, indicating a
fully recrystallized microstructure [23].

The distribution of the constituent phases is displayed
in Figure 2(b, c). The MEA and EHEA domains are dis-
tinguished by the enveloped Al element maps. And, EDS
line profiles of A715 and A860 samples are shown in
Figure 2(d, e). The fluctuations of elemental distribu-
tion are observed in the EHEA domain because of the
phase separation to FCC and B2 phases. Between EHEA
andMEAdomains, the diffusion layers are extended over
1 μm after annealing. Interestingly, the presence of Al
over 3 at% is observed in MEA domains, which indicates
some EHEA domains dissolved in MEA domains rather
than forming separated EHEA domains. The composi-
tions of the domains were summarized in Table S1. The
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Figure 2. (a) X-ray diffraction patterns of the powders, as-HPT sample, and annealed samples at different temperatures and times, SEM-
BSE micrographs of the (b) A715 and (c) A860 samples, and (d, e) EDS line profiles obtained from the yellow lines indicated in the
enveloped BSE images.

Figure 3. (a) TEMmicrographs of the interface of the MEA and EHEA domains with the corresponding EDSmaps and (b) HRTEM images
with the FFT patterns of FCC and B2 phases in A715.

increased contents of Ni in MEA domains also support
the dissolution of EHEA domains in MEA domains.

In Figure 3, TEM micrographs and corresponding
EDS maps of the domain interfaces in the A715 sam-
ple show the decomposition of the EHEA to the Al-rich
and Al-lean regions. From the FFT pattern obtained in
the HR-TEM image, the Al-rich and Al-lean regions are
confirmed to be the B2 and FCC phases.

Since the EHEA domain decomposes to a dual-phase
structure during the post-HPT annealing, the grain
growth is retarded in this domain because one phase can
effectively resist the growth of the other phase, result-
ing in the finer grain size [22,24]. As a result, the FCC
grains in the EHEA domain contain a finer grain size

of ∼463 nm than the FCC grains in the MEA domain
of ∼778 nm in the A715 sample. Also, the grain size of
the B2 phase (∼393 nm) is similar to the FCC grain
size in the EHEA. In the A860 sample, as the annealing
temperature and time increase, the grain size increases
in both MEA and EHEA domains. However, the differ-
ence in the grain size gets distinctly in the A860 sample.
The FCC grain size in the MEA grows up to ∼1.282 μm,
while the grain size of FCC and B2 phases in the EHEA
remains about ∼400 nm. Consequently, a hierarchically
heterogeneous structure is achieved, containing coarse
FCC grains in the MEA domain, and fine FCC and B2
grains in the EHEA domain. Furthermore, the nanoin-
dentation hardness of each phase is reported as 9.7 (B2),
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Figure 4. (a) Engineering stress-strain curves of the as-HPT and annealed samples, (b) SHR curves. Comparison of (c) YS vs. uniform
elongation and (d) UTS vs. uniform elongation of the samples in the present work and literature processed by the casting, conventional
powder metallurgy (PM) routes, and additive manufacturing (AM) [12,38–52].

5.8 (FCC in the EHEA domain), and 4.6GPa (MEA),
respectively [25,26]. Because the B2 and FCC phases in
the EHEA domain have higher hardness and finer grain
size, the difference in mechanical properties between the
MEA and EHEA domains become more pronounced.
The present hierarchically heterogeneous structure con-
sists of grain size heterogeneity in FCC grains, chemi-
cal composition heterogeneity stemming from different
powders, and crystal structure heterogeneity originating
from phase decomposition to FCC and B2 phases.

The tensile stress-strain curves are displayed in
Figure 4(a). The tensile strength of the as-HPT sam-
ple reaches ∼1.92GPa, representing the strong bonding
betweendifferent powders achieved by cold-consolidation
using P-SPD procedure. Due to the restricted dislo-
cation movement in the as-HPT sample, this sample
demonstrates a limited plastic deformation [12,27]. After
the post-HPT annealing, the ductility is improved in
the cost of strength. The yield strength (YS) values of
the annealed samples decrease from ∼1476 (A715),
∼1388 (A760), ∼1293 (A815), to ∼1289MPa (A860)
due to the reduced dislocation density and grain growth,
while total elongation continuously increases from ∼4%
(A715), ∼10 (A760), ∼14 (A815), to 22% (A860).
Noticeably, all annealed samples exhibit remarkable

YS over 1.2GPa, attributing to the nano-crystalline
microstructure, utmost densification, high dislocation
density, strong B2 phases, and hierarchical heterostruc-
ture achieved by the present fabrication technique.

To clarify the source of high YS, the expected YS is cal-
culated using the rule of mixture (ROM) equation [28].
The A860 sample consists of MEA and EHEA domain
with an atomic percent of 50%, which can be recalcu-
lated to 49.4 Vol% ofMEA and 50.6 Vol% of EHEA using
the atomic weight of constituent elements and density of
alloys. First, the strength of the MEA domain is obtained
from the following Hall-Petch equation [29]:

σMEA = σ0_MEA + KMEA · d− 1
2 , (1)

where σMEA, σ0_MEA, KMEA, and d are YS, friction stress
(256MPa), Hall-Petch coefficient (226 MPa · μm

1
2 ), and

grain size of MEA domain, respectively [30]. By substi-
tuting the grain size of the A860 sample (∼1.3 μm) into
the equation, the YS of the MEA domain is calculated as
∼454MPa.

Meanwhile, the Hall-Petch-type equation can be used
in the EHEA [31]:

σEHEA = σ0_EHEA + KEHEA · λ− 1
2 , (2)
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where σEHEA, σ0_EHEA, KEHEA, and λ are YS, friction
stress, Hall-Petch coefficient, and inter-lamellar spac-
ing of the EHEA domain. The inter-lamellar spacing
(∼0.86 μm) is calculated as the sum of grain sizes of
FCC and B2 phases in the EHEA domain. The σ0_EHEA

andKEHEA are obtained as 163MPa and 907 MPa · μm
1
2 ,

by plotting the data of YS and inter-lamellar spacing in
Ref. [32]. The YS of the EHEA domain is calculated
as ∼1142MPa. Using ROM equation, the YS of MEA-
EHEAmulti-materials is predicted to be 802MPa, which
cannot represent the experimental YS. The difference
between the calculated and experimental YS is assumed
to be attributed to residual stress, dislocations, contam-
ination of powders, and HDI strengthening. Further-
more, the large Al atoms added to MEA domains during
the annealing process can induce additional solid solu-
tion strengthening [3]. The microstructural heterogene-
ity could induce massive plastic incompatibility between
the domains. To maintain plastic compatibility, geomet-
rically necessary dislocations (GNDs) could be generated
and piled up at the domain boundaries, leading to hetero-
deformation induced (HDI) strengthening [33–35]. The
HDI strengthening contributes to YS and additional
strain hardening, resulting in a good combination of
strength and ductility [3,33,34].

Meanwhile, it is known that post-elongation after
necking can be affected by the sample dimension, while
the uniform elongation before necking is independent
of sample thickness and gauge length [36]. To exclude
the sample size effects, the uniform elongation is deter-
mined from the intersection of true stress–strain curves
and strain-hardening rate (SHR) curves in Figure 4(b).
To obtain the uniform elongation and valuate the con-
tribution of HDI strengthening, the strain-hardening
behaviors of the samples are examined using the strain-
hardening rate (SHR) curves in Figure 4(b). The as-HPT
sample shows a decreasing trend in SHR until frac-
ture. This behavior is usually observed in SPD materi-
als with high dislocation density [27]. Meanwhile, the
SHR curves of the annealed samples show dramatic
drops under subzero values after yielding, which was
observed in ultrafine-grained materials due to the yield
drop phenomenon [12]. Then, the SHR values of the
A760, A815, and A860 samples return to positive and
fluctuate in positive values until fracture. The different
domain sizes for GND accumulation and the saturation
of dislocation at different strain levels lead to the fluctu-
ation of the SHR values. Among the intersection of the
true stress–strain curves and the SHR curves, the high-
est strain is considered the onset of necking [37]. The
uniform elongation increases from ∼2% (A715), ∼2%
(A760), ∼10% (A815), to 15% (A860).With controllable
annealing, an exceptional strength-ductility combination

of YS ∼1289MPa and uniform elongation ∼15% is
obtained in the A860 sample.

The YS vs. uniform elongation and the ultimate tensile
strength (UTS) vs. uniform elongation of the samples in
this study are compared to those of theMEAs and EHEAs
from literature (Figure 4(c, d)) [12,38–52]. To exclude
the size effect, the values of uniform elongation were
used for comparison. The multi-materials fabricated in
this study exhibit superior mechanical properties to all
MEAs in the previous studies. Moreover, the strength
of multi-materials is higher or similar to that of EHEAs
fabricated by casting, powder metallurgy, and additive
manufacturing. Considering the simple calculation from
the ROM [28], the mechanical properties of this study
should be positioned in the intermediate range of the
MEAs and EHEAs. However, the mechanical properties
of thesemulti-materials are placed above the those of sin-
gle EHEAs and MEAs. The impressive mechanical prop-
erties achieved in this study are attributed to grain refine-
ment, dislocation density, and heterostructures, which
can be manufactured by the novel P-SPD technique.
Furthermore, superior mechanical properties would be
expected by controlling the ratio of powders and adding
reinforcement particles to fabricate HEA/MEA-matrix
composites.

To evaluate the contribution of HDI strengthening
in the present hierarchically heterostructure, the ratios
of HDI stress to flow stress are calculated at differ-
ent true strains from the LUR test of the A860 sample
(Figure 5(a,b)). The HDI stress and effective stress of the
sample are summarized in Table S2. The effective stress
of the A860 remains around 500MPa, while the values of
HDI stress steadily increase from ∼637 to ∼802MPa.
Also, the strain hardening of theA860 sample is predomi-
nantly attributed to HDI stress, which occupies ∼60% of
flow stress.

Figure 5(c-e) and Figure 5(f-h) represent the phase
maps and KAM maps of the A860 sample in the differ-
ent local strains to assess the evolution of GNDs in the
present hierarchically heterostructure. The KAM evo-
lutions in the MEA and EHEA domains at the differ-
ent local strains are summarized in Fig. S4. The initial
microstructures are obtained in the grip part of the ten-
sile sample, which exhibits a low level of KAM values.
The low KAM value means that the HPT-induced dis-
locations are recovered during annealing. Meanwhile, at
the local strain of ∼0.15 (Figure 5(d,g)), the KAMvalues
of the FCC phases (0.50°) in the EHEA domain increase
first, owing to profuse phase boundaries between FCC
and B2 phases. The hard B2 phase and soft FCC matrix
in the EHEA develop GNDs to maintain strain compat-
ibility [33,53]. Ultrafine grains of FCC and B2 phases
in the EHEA domains offer profuse grain boundaries
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Figure 5. (a) Loading-unloading-reloading curves of the A860, (b) ratio of HDI stress to flow stress taken from the LUR test, and (c-h)
EBSD-KAMmaps taken from (i) the major strain map of the deformed A860 sample at (c, f ) an initial state and local strain of (d, g) ∼ 0.15
and (e, h) 0.27, respectively. The KAMmaps are measured up to the third nearest neighbor with a maximummisorientation of 5°.

and phase boundaries. Furthermore, the B2 phases act as
strong obstacles to dislocationmovement [45]. Abundant
obstacles like the B2 phase, phase boundaries, and grain
boundaries attribute the steep increase of dislocation
density in the FCC phases of EHEA domains. However,
the dislocation accumulation shows a different aspect
in the intensely deformed microstructures at the local
strain of ∼0.27 (Figure 5(e,h)). The KAM value of the
MEA domain (1.17°) increased significantly, surpassing
the KAM value of the FCC in the EHEA domain (0.95°).

Because the EHEA domains act as hard domains, and
the MEA domains act as soft domains in the microscale,
the GND evolves in theMEA domains to compensate for
the strain incompatibility, leading to an additional HDI
strengthening.

Those KAM evolutions displayed in Figure 5(c-h) can
help elucidate the trend of the ratio of HDI stress to
flow stress in Figure 5(b). The microstructural inhomo-
geneity between the FCC and B2 phases in the EHEA
is repeated at the nanoscale, leading to a rapid increase
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and subsequent saturation of dislocation density. The
ratio of HDI stress to flow stress sharply increases from
0.55 (εtrue = 0.01) to 0.61 (εtrue = 0.03), which can be
attributed to the increased accumulation of GNDswithin
the EHEA domain. On the other hand, the MEA and
EHEA domains repeat at the in microscale, resulting in
a relatively slower increase in the ratio of HDI stress to
flow stress.

Conclusion

While the importance and expediency of the heterostruc-
turing are gettingmore andmore attention, it is notewor-
thy that a hierarchical heterostructuring can be obtained
by selecting appropriate materials and consolidating
their powder mixtures. In this work, a sound bulk disk
with hierarchically heterogeneous structures was fabri-
cated by combining the ductile CoCrFeNi MEA and
hard AlCoCrFeNi2.1 EHEA powders with a dual-phase
structure. HPT processing and adequate heat treatment
led this multi-material to have a hierarchically hetero-
geneous structure, consisting of (1) nano-scaled phase
separation within EHEA and (2) EHEA-MEA domain
separation, leading to a superior combination ofmechan-
ical strength and ductility compared to EHEA and
MEA of the previous studies. Furthermore, the ultrafine
grains fabricated by SPD process effectively improved
the strength of multi-materials. These materials could be
considered in high-tech applications such asmicro-gears.
This study suggests an attractive solution to the fabri-
cation of hierarchically heterogeneous structures, which
have been considered troublesome. A complicated het-
erostructure with two or more hierarchies can be fab-
ricated by including several powders of various physi-
cal properties, combining powderswith heterostructures,
or controlling the powder size and powder ratio. The
suggested solution for the hierarchically heterogeneous
structuring would be a breakthrough to achieve supre-
mum properties through a PM-based technique.
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