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A B S T R A C T   

Statistical analyses of the shear stresses, τy, at which the first ‘pop-ins’ occur during the spherical tip nano
indentation of a wide variety of materials is often conducted to understand the micromechanisms of incipient 
plasticity. In an earlier paper, we reported such a study on data generated on several different Zr-based bulk 
metallic glasses (BMGs) using a wide range of experimental variables, such as the tip radius, Ri, loading rate, Ṗ, 
and structural state of the glass. In the present work, we analyse the second pop-in stress, τ2, data employing the 
expectation maximization algorithm in conjunction with the Akaike Information Criterion to examine which of 
the single and mixed (bimodal) versions of the Gaussian, Lognormal and Weibull (both 2 and 3 parameter) 
statistical models best describes the stochasticity of τ2. Results show that the 3-parameter Weibull distribution 
also captures the stochasticity of τ2, just as it does for τy. For datasets of τ2 that are generated with larger Ri and 
Ṗ, the bimodal 3-parameter Weibull distribution is a better descriptor of the dispersion. While Weibull exponent, 
m, of τ2 datasets is marginally higher than that of τy, their kernel density estimates (KDEs) are similar. However, 
there is a relative shift of the KDEs of τ2 to smaller values compared to that of τy. From mechanistic arguments, τ2 
is determined as the stress to nucleate a second shear band over a previously formed shear band and its sto
chasticity is attributed solely to the mechanical heterogeneity of the material within it. On this basis, the average 
shear strength of the shear band is estimated to be ~8–11% and 15–17% lower than the strength of the unde
formed BMG in the as cast condition and structurally relaxed conditions, respectively. This study provides an 
understanding of how plasticity develops in BMGs during nanoindentation.   

1. Introduction 

The local shear yield strength, τy, of bulk metallic glasses (BMGs) is 
measured from the load at which the first pop-in occurs, PFP, in the load 
(P) vs. displacement (h) curve, during spherical-tip nanoindentation. 
Owing to the disordered nature of packing of atoms in BMGs, τy exhibits 
significant heterogeneity, the statistical analysis of which has been uti
lized to extract quantitative and qualitative information on the micro
scopic carriers of plasticity in the material [1–6]. Packard et al. [7] 
calculated the cumulative distribution function (CDF) of the τy data 
generated on single crystal platinum and 3 different BMGs and observed 

that the nanoscale dispersion in strength is affected by both thermal 
fluctuations as well as structural heterogeneities in BMGs. Choi et al. [8, 
9] combined the functional form of the CDF of τy with the cooperative 
shear model (CSM) proposed by Johnson and Samwer [10] to calculate 
the activation volume and the average size of a shear transformation 
zone (STZ), which is the widely accepted unit carrier of plasticity in 
BMGs. Perepezko et al. [2] obtained a statistical fit for τy data with a 
bimodal Gaussian distribution and concluded that there are two distinct 
types of defects that can trigger the formation of an incipient shear band 
at different stresses. 

Nag et al. [1] critically examined the work of Perepezko et al. and 
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noted that instead of implicitly assuming that τy data will be best fit by a 
Gaussian distribution, it is important to identify the distribution that 
best describes τy data, amongst different candidate distributions. For 
this, they first analysed the τy data with unimodal and bimodal versions 
of Gaussian, lognormal, and Weibull distributions by employing 
maximum likelihood estimates (MLEs). Then, by applying the Akaike 
information criterion (AIC) for each model, they firmly established that 
the dispersion in τy is described best by the 3-parameter Weibull (3 W) 
distribution. Weibull statistics is widely used for assessing the strength 
variability of brittle materials, where failure initiates at the largest 
defect, as it acts as the ‘weakest link’ in the material [11]. Likewise, Nag 
et al. [1] argued that the variations in τy are justifiably described by the 
Weibull distribution as yielding in BMGs also initiates at structural weak 
links, which are regions with lower atomic packing. They observed that 
τy has a bimodal distribution when indenters with large radii are used or 
when the loading rates of the test are relatively higher. They suggested 
that in both these situations, the bimodality of the τy distribution is an 
outcome of the availability of multiple shear band paths that operate at 
different stresses. 

While most studies have hitherto only focussed on the statistics of 
incipient plasticity during indentation of BMGs, none have addressed 
the evolution of plasticity beyond the yield point. In crystalline mate
rials, the dispersion in the first and second pop-in stresses is character
ized by the Gaussian and power law statistics, respectively [12]. This 
change is attributed to the transition in deformation mechanism from 
dislocation nucleation during yielding to dislocation network evolution 
with increasing plastic strain [12]. In BMGs, both first and second pop-in 
stresses are expected to correspond to the operation of a shear band. This 
raises the following questions pertaining to the statistical nature of the 
stress, τ2, associated with the second pop-in during spherical-tip nano
indentation experiments on BMGs. First, would τ2 exhibit dispersion? If 
yes, what would be the statistical nature of it? Second, what are the 
characteristics of this dispersion compared to that of τy, i.e., is the 
dispersion in τ2 more narrower or wider than the latter? Finally, once 
the most appropriate distribution is identified, can a correlation with the 
mechanism of subsequent shear band formation and the distribution of 
shear stress be established? 

To answer the above questions, we performed a detailed statistical 
analysis on 14 datasets of τ2 that were generated by varying experi
mental variables such as structural state of the BMG, indenter radius, Ri, 
and loading rate, Ṗ, which were also the reference datasets for Nag et al. 
[1]. For determining the appropriate distribution that describes these 
datasets, the statistical analyses procedures employed by Nag et al. [1] 
were utilized. Results show that the observed scatter in τ2 is best 
described by the 3 W distribution, which is similar to that seen for τy 
distributions, with minor differences. These differences are linked to the 
change in the conditions required for the nucleation of a shear band 
during incipient plasticity and that after a shear band has already 
formed. Further analysis of the kernel density estimates (KDEs) of τy and 
τ2 datasets provides a lower bound estimate of the shear strength of 
shear bands. 

2. Materials and experiments 

Table 1 provides a summary of the 14 experimental datasets of 
several indentation experiments, which were performed on two 
different Zr-based MGs with the nominal compositions of Zr35Ti30

Cu8.25Be26.75 and Zr52.5Cu17.9Ni14.6Al10Ti5 (commercially referred to as 
Vit 105) with Tg of 578 and 673 K, respectively. Details of their pro
cessing and fabrication are listed elsewhere [13–15]. These alloys were 
tested at room temperature (~300 K) in as-cast (AC), intermediately 
annealed (A) and structurally relaxed (SR) states (see Table 1 for the 
annealing conditions employed). The A and SR states were attained by 
annealing the MG samples at temperatures 40 degrees above/below 
their Tg. For all datasets, nanoindentation experiments were performed 

on mirror-polished specimens using a Hysitron Triboindeter which is 
equipped with spherical indenter tips of different radii (Ri = 1, 2.91, 
5.75 and 31.5 µm). Polishing was performed with diamond suspension 
sprayed over a cloth on a rotating disk polishing machine and kerosene 
was continuously added to minimize heating of the sample due to 
friction. 

For other datasets, the details of Ri and loading rates, Ṗ, that were 
employed for performing these testsare mentioned in Table 1. During 
spherical indentation, the maximum shear stress underneath the 
indenter, τmax, at any given load, P, is given by [16,17]: 

τmax = 0.17
(

Er

Ri

)2/3

P1/3 (1)  

where Er is reduced modulus, given by 

1
Er

=
1 − ν2

s

Es
+

1 − ν2
i

Ei
(2)  

where E and ν are the elastic modulus and Poisson’s ratio, with the 
subscripts ’s’ and ’i’ indicating the sample and the indenter, respec
tively. A schematic illustration of the nanoindentation test is shown in 
Fig. 1(a) and the representative P-h curve is shown in Fig. 1(b), wherein 
PFP and PSP indicate the points at which the first and second displace
ment bursts are observed, respectively. These bursts are differentiated 
from the noise, by studying the variations of the indenter velocity (dh/ 
dt) during the test. Fig. 1(c) displays dh/dt profile as a function of P. 
Several small spikes in dh/dt are observed, which are classified as noise 
due to vibration of the tip. However, the significantly larger peaks are 
identified as displacement bursts or pop-ins [18]. 

The load, PFP, at which first pop-in (FP) occurs corresponds to the 

Table 1 
Summary of the metallic glass alloy compositions, their structural states and 
indentation parameters (loading rate, Ṗ, indenter radius, Ri) utilized in this 
study. The size of the SR1 dataset was found to be insufficient for performing 
statistical analyses.  

Dataset Composition Thermal 
history 

Ṗ 
(mN/ 
s) 

Ri 

(µm) 
Data 
size for 
2nd 
pop-ins 

AC1 Zr52.5Cu17.9Ni14.6Al10Ti5 

(Tg = 673 K) 
As-cast 1 31.5 100 

AC2 ” As-cast 5 31.5 81 
AC3 ” As-cast 10 31.5 65 
AC4 ” As-cast 20 31.5 98 
AC5 ” As-cast 1 5.75 120 
AC6 ” As-cast 1 2.91 100 
AC7 Zr35Ti30Cu8.25Be26.75 (Tg 

= 578 K) 
As-cast 0.4 1 76 

A1 ” Annealed, 
553 K, 520 
min 

0.4 1 76 

A2 ” Annealed, 
573 K, 170 
min 

0.4 1 80 

A3 ” Annealed, 
593 K, 41 
min 

0.4 1 66 

A4 ” Annealed, 
613 K, 15 
min 

0.4 1 70 

SR1 Zr52.5Cu17.9Ni14.6Al10Ti5 

(Tg = 673 K) 
Annealed, 
630 K, 60 
min 

1 5.75 41 

SR2 ” Annealed, 
630 K, 60 
min 

1 2.91 56 

SR3 Zr35Ti30Cu8.25Be26.75 (Tg 

= 578 K) 
Annealed, 
558 K, 1440 
min 

0.4 1 80  
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point where P, vs. depth of penetration, h, curve deviates abruptly from 
that predicted by the Hertzian elastic contact mechanics (see Fig. 1(b)). 
Each subsequent displacement excursion represents a discrete plastic 
event, where a shear band is formed in the material and is accompanied 
by strain relaxation in the rest of the material. Therefore, each pop- in 
the P-h curve of a BMG can be treated as a discrete plastic event. At PFP, 
which is the first plastic event, τmax corresponds to the local shear yield 
strength, τy. Similarly, τmax at PSP is the shear stress, τSP that represents 
the second plastic event. Unlike τy, which represents the stress that 
triggers incipient plasticity, τSP, is not the actual stress at which the 
second plastic event is initiated. This is because there is some stress 
relaxation after the first pop-in, which causes a drop in the mean contact 
pressure, pm, and hence τmax, during the first pop-in. This stress drop 
must be considered for calculating the actual maximum shear stress 
corresponding to the second plastic event. For this, the drop in pm, Δpm, 
can be first calculated from the Hertzian contact relation (see also S1 in 
SI), 

Δpm =
4

3π
Er

R1/2
i

(Δh)1/2 (3)  

where Δh is the magnitude of the first pop-in displacement. Then, using 
the relation (see S1 in SI), 

τmax ∼ 0.47pm (4)  

the drop in maximum shear stress, Δτmax, can be calculated. Finally, the 
actual maximum shear stress for initiating the second plastic event is 
calculated from, 

τ2 = τSP − Δτmax (5) 

Pop-in events beyond the 2nd were not studied as the number of such 
occurrences were insufficient for performing a valid statistical analysis. 

3. Statistical analyses 

3.1. Statistical models 

As already mentioned, Nag et al.’s study shows that 3 W model are 
the best descriptors of τy data in BMGs [1]. However, since it is not 
obvious that the 3 W model would also best describe τ2 data, the 
following statistical models were again considered in evaluating its 
dispersions. Gaussian (G) model was chosen as a candidate model as it is 
the most commonly used statistical model to fit most experimental data, 
although it has an intrinsic limitation in the present context that a 
normally distributed random variable can also take negative values, 
whereas τy and τ2 are always positive. Both Lognormal (LN) and W 
distributions do not have this drawback. LN approximates multiplicative 
degradation processes [19,20] and given that plasticity in MGs involves 
strain localization through the cascading activation of multiple STZ 
events [21], it is worth examining it as a possible candidate distribution. 

Considering these three models, statistical analyses of the experi
mental τ2 data was performed. Both two- and three- parameter versions 
of the W distribution, which are abbreviated as 2 W and 3 W, respec
tively, are examined. For the G and LN distributions, the probability 
density functions (PDFs), f , are [22,23] 

f (u) =
1

σ
̅̅̅̅̅
2π

√ exp

(
− (u − μ)2

2σ2

)

(6)  

f (u) =
1

uσ
̅̅̅̅̅
2π

√ exp

(
− (lnu − μ)2

2σ2

)

, u > 0 (7)  

where u is the data, μ and σ are mean and standard deviation, respec
tively. In the case of 3 W distribution, f is given as, 

Fig. 1. (a) Schematic illustration of the nanoindentation test, (b) A representative P-h curve on a BMG showing first two pop-ins occurring in the loading segment of 
the curve and (c) corresponding velocity profile; blue circles indicate velocity spikes. 
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f (u) =

⎧
⎪⎨

⎪⎩

m
β

(
u − α

β

)m− 1

exp
(

−

(
u − α

β

)m)

, u ≥ 0

0, u < 0
(8)  

where α and β are location and scale parameters respectively, and m is 
the Weibull modulus. For 2 W distribution, α = 0. The probability 
density function for two-component mixture models, fM, is obtained 
from the weighted linear combination of f, which is, 

fM(u|p, θ1, θ2) = pf (u|θ1) + (1 − p)f (u|θ2) (9)  

where p is the proportion of f (u|θ1) and θ is the parameter space [1]. 

3.2. Sample size evaluation 

Any statistical inference requires large (ideally infinite) data, which 
is not possible to generate in lab-scale experiments. Considering this, we 
first conducted sample size optimization tests for different statistical 
models examined in this study. The procedure for conducting these tests 
is listed in section S2.1 of the supplementary information (SI). From this, 
it was determined that a minimum sample size of 50 is sufficient for 
reliable and consistent inference. The data size of the second pop-ins are 
listed in Table 1. The data set that did not meet the above-mentioned 
sample size criteria (i.e. SR1) (Table 1) will henceforth not be 
considered. 

3.3. Model selection 

The maximum likelihood estimates (MLEs) are known to give best fit 
estimates with respect to consistency and rate of convergence, given 
certain regularity conditions are satisfied by the chosen model [22]. For 
bimodal distributions, the Expectation-Maximization Algorithm (EMA) 
was employed to estimate MLEs. Details of these procedures are pro
vided in section S2.2 in SI and also discussed in Nag et al. [1]. 

Then, AIC [24] was utilized to assess the suitability of the selected 
model to describe the data. The values of AIC were computed using the 
following equation [25]: 

AIC = − 2lnL(θ̂) + 2γ, (10)  

where γ is the number of parameters to be fitted in the model (see 
Table S1) and L(θ̂) is the maximum likelihood. The model that yields the 
lowest AIC for a given dataset is the best fitting model for that particular 
dataset. See section S2.3 for further details on AIC. 

4. Results 

The sample sizes of most datasets of τ2, with the exception of SR1, 

were found to be sufficient for performing valid statistical analyses. In 
Table 2, AIC estimates for these 13 datasets of τ2, considering the chosen 
distributions in the study, are listed. For a given dataset, the model that 
yields the lowest AIC value is considered as its best descriptor (see 
Section S2.3 in SI for details). It is evident that AIC of the bimodal 3 W 
distribution yields the lowest value for AC1-AC4, with the exception in 
AC2, which is best described by bimodal 2 W while 3 W yields the next 
lowest value of AIC for it. For the remaining 9 datasets unimodal 3 W has 
the lowest AIC values. 

Table 3 lists MLEs of the proportions of 3 W bimodal components and 
the p-values for bimodal and unimodal 3 W distributions for the 13 
datasets. Apart from AC1-AC4 datasets, where both components are 
significant, in the other 10 datasets, one of the two components is > 91% 
while the other varies between 1 and 8%. Considering that sampling 
noise or experimental errors can lead to such small second components, 
it is reasonable to ignore them and conclude that the unimodal 3 W 
distribution effectively represents the stochastic nature of τ2 in these 9 
datasets, whereas bimodal 3 W distribution best describes that of AC1- 
AC4. 

Next, τ2 datasets are fit with these MLEs and the ’bootstrap method’ 
of the Kolmogorov-Smirnov (KS) test was employed to test the goodness- 
of-fit of the uni- and bi-modal 3 W distributions [26,27] (See Section 
S2.4 in SI for details). The p-values for both the distributions are listed in 
Table 3. For all datasets, the p-values are higher than the chosen value of 
the significance level, αs ~0.05. This observation implies that neither 
model can be rejected only on the basis of goodness-of-fit. Note that the 
KS test is only appropriate for testing if the candidate models fit the 
experimental data well and should not be used for choosing the appro
priate statistical model. AIC tests should be exclusively relied upon for 
model selection. From these observations, it can be inferred that the 
stochasticity of τ2 is represented by the unimodal 3 W distribution, 
except in the cases of AC1-AC4 datasets, which are best described by the 
bimodal 3 W distribution. 

Next, the specific characteristics of the distributions that describe 
these datasets are examined. The KDEs of τ2 for all datasets are shown in 
Fig. 2. For AC1–AC4 datasets (see Fig. 2(a)), which are produced with a 
large indenter (Ri = 31.5 μm) but with varying Ṗ, an increase in Ṗ from 5 
mN/s to 10 mN/s, broadens the distribution, i.e., shifts the largest value 
of τ2 distribution from 2.5 GPa to 3 GPa and increases its bimodality. 
Similarly, with decreasing Ri, τ2 distributions shift to higher values (see 
Fig. 2(b)). In contrast, structural relaxation of the BMG narrows the 
distribution shifts the peak of the τ2 distribution to higher values (see 
Fig. 2(c)). 

Note that most of the inferences on the stochasticity of τ2 are similar 
to those observed for τy by Nag et al. [1]. For instance, Nag et al. 
determined that the stochasticity of τy is best described by the 3 W 
bimodal distribution for AC1-AC4 datasets and by 3 W unimodal 

Table 2 
Akaike information criterion (AIC) estimates of τ2. The estimates with the lowest value amongst all competing models for the respective dataset are highlighted in bold. 
G, LN, 2 W and 3 W refer to Gaussian, lognormal, two and three parameter Weibull distributions.  

Dataset Bimodal distribution Unimodal distribution 

G LN 2W 3W G LN 2W 3W 

AC1 19.75 19.97 20.99 19.28 20.03 24.04 19.32 19.38 
AC2 − 15.89 − 15.46 ¡21.62 − 21.52 − 20.16 − 16.92 − 21.33 − 20.04 
AC3 43.86 44.06 47 43.82 69.49 61.94 77.24 50.52 
AC4 41.44 41.48 51.46 41.40 58.73 63.57 54.76 56.74 
AC5 67.44 64.68 70.48 62.28 66.91 60.28 76.44 59.80 
AC6 109.52 109.84 109.26 108.24 113.5 107.5 123.2 107.4 
AC7 42.72 42.76 42.2 42.84 39.29 43.38 40.12 38.29 
A1 82.46 83.54 83.14 83.12 86.86 88.54 87.88 81.61 
A2 108.16 108.1 108.98 104.52 106.81 109.79 106.73 104.2 
A3 80.7 82.1 80.4 81.3 81.98 88.56 77.64 77.61 
A4 76.72 78.72 77.58 71.3 74.19 73.94 78.78 70.39 
SR2 − 22.7 − 22.6 − 19.1 − 26.62 − 24.05 − 26.58 − 3.60 ¡26.72 
SR3 109.24 109.56 110.24 102.5 104.12 104.96 107.84 101.4  
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Table 3 
Maximum likelihood estimates (MLEs) and p-values of the KS test of unimodal and bimodal 3-parameter Weibull (3 W) distributions of τ2.  

Dataset 3 W Bimodal 3 W Unimodal 

Proportion α β m p-value α β m p-value 

AC1 0.35 1.27 0.42 1.93 0.98 0.97 1.01 3.96 0.82 
0.65 1.27 0.81 4.37 

AC2 0.41 1.13 0.99 7.28 0.89 0.85 1.03 5.54 0.74 
0.59 1.71 0.45 4.12 

AC3 0.48 1.26 1.13 4.29 0.99 1.46 0.59 1.49 0.55 
0.51 1.42 0.32 2.60 

AC4 0.58 1.09 2.53 16.59 0.99 0.46 2.79 8.97 0.23 
0.42 1.01 1.92 11.26 

AC5 0.96 1.39 0.63 2.69 0.99 1.45 0.80 1.86 0.98 
0.04 2.31 0.27 0.91 

AC6 0.02 1.67 0.01 2.01 0.65 1.59 1.01 2.17 0.72 
0.98 1.73 0.87 1.91 

AC7 0.97 0.23 0.59 2.91 0.72 0.25 0.58 2.69 0.94 
0.03 0.97 0.25 79.26 

A1 0.97 0.78 2.35 5.82 0.8 1.57 1.56 3.66 0.82 
0.03 3.61 0.06 235.69 

A2 0.96 0.33 2.77 6.19 0.97 1.47 1.61 3.51 0.91 
0.04 3.30 0.004 5.95 

A3 0.94 0.49 2.70 6.81 0.92 0.54 3.76 9.91 0.80 
0.06 1.58 1.84 310.83 

A4 0.03 0.32 2.18 462.95 0.99 1.99 1.16 2.82 0.99 
0.97 1.96 1.22 3.04 

SR2 0.98 2.41 0.99 3.72 0.89 2.51 0.57 2.61 0.76 
0.02 3.23 0.12 312.64 

SR3 0.01 2.13 0.09 217.32 0.99 1.94 1.64 3.27 0.99 
0.99 2.19 1.39 2.82  

Fig. 2. Strength distribution represented as kernel density estimates (KDE) of τ2 in 2nd pop-in of Zr-based BMGs demonstrating the effects of (a) loading rate (Ṗ), (b) 
indenter tip radius, Ri and (c) thermal history. 
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distribution for other datasets [1]. It was also observed that for datasets 
produced with a large indenter (Ri = 31.5 μm) or at higher Ṗ, the τy 
distribution shifts to higher values. Additionally, the τy distribution of 
the structurally relaxed BMG is narrower and its peak shifts to higher 
values compared to that of its as-cast counterpart. 

To further compare the τ2 and τy distributions, KDEs of some 
representative datasets are shown in Fig. 3. KDEs of τ2 and τy for all 
other datasets are shown in Fig. S2. The widths of the KDEs of τ2 and τy 
are similar but those of the latter are shifted to higher values compared 
to τ2 distributions, which indicates that the second plastic event occurs 
at a lower stress than the first one. In Table S2, the range of τ2 and τy 
values for all datasets are listed. From these, it is evident that the τy 
distributions have shifted to 15–17% higher values compared to that of 
τ2 for SR2 and SR3, whereas for all other datasets the magnitude of the 
shift is only 8–11%. 

Some additional differences in the distributions were identified when 
the characteristics of the two distributions are compared. For datasets 
AC1-AC4, m of both components of the τ2 distributions are moderately 
higher than those of the τy distributions. For instance, m of one of the 
components of AC2 is ~7.3, whereas m of both components of AC4 
datasets are 16.6 and 11.3, respectively, indicating a significant nar
rowing of the dispersions. Nag et al. [1] measured similarly high values 
of m for AC3 and AC4. In the datasets that are represented by the 
unimodal 3 W distribution, m is in the range of 1.8–3.6, with the 
exception of A3, which is slightly higher than those of τy, which in the 
range of 1.5–2.5 [1]. Given that magnitudes of m and scale with the 
skewness of the distribution, τ2 distributions are only marginally more 
skewed than those of τy. 

5. Discussion 

5.1. Physical significance of 3 W distribution describing τ2 data 

In spherical tip indentation of BMGs, the first pop-in event, which 
signifies yielding, occurs when an embryonic shear band is nucleated 
underneath the indenter [28,29]. Shear bands form by the linking of 
shear transformation zones (STZs), which are present in regions with 
lower atomic packing fraction or greater free volume [27,30–35]. 
However, since there are stress gradients underneath a spherical 
indenter, an embryonic shear band can nucleate only along a shearing 
plane where a minimum number of STZs can be activated. On the 
premise that yielding initiates at the weakest link in the material, Nag 
et al. [1] established a physical basis for analysing τy data using the 
Weibull statistics, which is applicable to this study as well. It was also 
noted that the characteristics of the 3 W distribution for τy, obtained 
from indentation tests, are distinctly different than that for failure 
strength data, which is obtained from tension and compression tests on 
BMGs. This difference stems from the fact that there is a critical strain for 
shear localisation within a shear band that must be attained to cause 
failure in tension and compression [36,37]. In contrast, incipient plas
ticity in indentation is driven by the operation of STZs, whose energy 
barrier can exhibit a large variance [38–41]. 

Nag et al. [1] also addressed the effects of Ri and Ṗ on the parameters 
and bimodality of τy distributions. They noted that the volume of the 
material probed by the spherical indenter increases cubically with in
crease in Ri. This implies that an indenter with larger Ri can potentially 
activate several more STZs in a BMG than that with smaller Ri [1]. Since 
smaller tips have access to a lesser number of STZs, higher stress is 

Fig. 3. Strength distributions represented as kernel density estimates (KDE) of 1st and 2nd pop-in events for Zr-based BMGs demonstrating the effects of (a) loading 
rate (Ṗ), (b) indenter tip radius, Ri and (c) thermal history. 
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necessary for nucleating a shear band, which explains the observed shift 
in the τy distribution to higher values when indenters with smaller Ri are 
used. Also, owing to the fewer number of operable STZs in the deformed 
volume, the nucleation of multiple shear bands becomes unlikely. In 
contrast, when a tip with large Ri (~31.5 µm) is used, the availability of 
a larger number of STZs in the deformed volume enhances the likelihood 
of nucleating shear bands from multiple sources [40,41]. 

Besides this, Nag et al. [1] analysed the variations of τmax underneath 
a spherical indenter using the Hertzian solutions for elastic contact be
tween a sphere and a flat surface [16] and determined four 2-dimen
sional projections of shear planes where plasticity could potentially 
initiate. A plot of these τmax contours is shown in Fig. 4, where the 
normalized coordinates, r′ and z′ represent the two-dimensional space 
for stress contours (see section S1 in SI for details). Nag et al. then 
established that a shear band can only form along the contour where the 
following two conditions are satisfied simultaneously. (i) A minimum 
critical value of the Mohr-Coulomb flow stress, τMC, is sustained over the 
τmax contour [18]. (ii) The shear stress gradients, ∂τMC

∂x , along the trajec
tory are low [42–44]. Applying this criterion, they determined that 
when indenters with a smaller Ri (1 – 5 µm) are used, only shear paths 
around contour C (see Fig. 4) is the preferred path for shear band 
nucleation. Alternately, when indenters with large Ri are employed or 
when tests are performed at higher Ṗ, regions encompassing both the 
contours C and D are favourable for shear band nucleation. Given that 
distinctly different stresses are required to nucleate a shear band along C 
and D contours, the τy distributions become bimodal. They also ratio
nalized the shift in τy distribution to higher stresses after structural 
relaxation to the lack of free volume in the BMG, which raises the 
average stress required to nucleate shear bands [45–47]. 

With the above as the background, we interpret the results of the 
statistical analysis of the τ2 data sets. At the outset, since τ2 data is also 
described best by 3 W distributions, it is evident that any post-yield 
plastic event in BMGs will also be governed by deformation at the 
weakest link in the material. The atomic structure inside a shear band, 
owing to the accumulation of plastic strain, is more disordered and is, 
therefore, softer compared to the rest of the BMG [5]. As a consequence, 
once shear bands nucleate, plastic flow localizes within them, leading to 
the observed strain softening behaviour of BMGs [31]. Strain softening, 
which is the converse of strain hardening, localizes plastic flow within 
the deformed area, which in this case, is the existing shear band. The 
failure of tensile and compression specimens along a single shear band 
supports this argument [48]. This implies that the first shear band that 
forms in BMGs during yielding is likely to be the favoured site for the 
formation of subsequent bands. Moser et al. [28] performed 
Berkovich-tip nanoindentation experiments on BMGs and observed 
shear band formation in real time inside an SEM and reached a similar 
conclusion. Besides noting that each displacement burst in the P-h curve 
corresponds to the formation of a shear band, they observed that pre
viously formed shear bands are the preferred (but not necessarily the 

only) nucleation sites for the formation of subsequent shear bands. The 
same is expected to hold true for the present study as it also involves 
nanoindentation, albeit with a spherical tip. 

Considering that a new shear band forms along the previously 
formed shear band, there is only one likely site for the second shear band 
to form when indenters with small Ri are employed. This explains the 
observation of unimodal 3 W distributions of τ2 for datasets produced by 
indenters with small Ri (see Fig. 2). Similarly, when indenters with large 
Ri are used, the second shear band will form near an existing shear band, 
which has formed along one of the two available trajectories. The dif
ference in the stress to operate shear bands along these trajectories is 
attributed to the observation of a bimodal 3 W distribution of τ2 for 
datasets produced with large Ri. One may then ask, if the paths for 
forming shear bands are fixed, why is τ2 not more deterministic, i.e., 
why are the τ2 distributions not narrower than those of τy? A marginally 
larger m of τ2 distributions, compared to that of τy, suggests that the 
stochasticity in strength extends beyond incipient plasticity. The ratio
nale for this is that the shear band cannot be treated as a crack-like 
defect that operates at a fixed stress governed by the local stress in
tensity factor. Several studies have shown that the material inside the 
shear band has a structure that is more disordered than the structure of 
the surrounding undeformed material, owing to free volume accumu
lation within it [49,50]. Therefore, the stress required to cause plastic 
deformation of the material within the shear band will also be governed 
by the activation of STZs, much like that of the undeformed material. 
Based on the previous analogy drawn between the ‘weakest link’ theory 
and STZ activation, it is expected that τ2 data would be best described by 
Weibull distribution. 

With an increasing Ṗ, more shear bands nucleate along the D contour 
(see Fig. 4), which operates at a higher stress, to accommodate the 
rapidly accumulating strains. This also facilitates the formation of the 
second shear band along these trajectories, which explains the 
increasing bimodality of τ2 distributions at higher Ṗ (see Fig. 2(a)). 
Finally, for structurally relaxed samples (SR2 and SR3), the material 
within the previously formed shear band is in a more structurally 
relaxed state than that in an as-cast BMG. Therefore, higher stress is 
required to operate STZs in the previously formed shear band of the 
relaxed BMG, which explains the shift of τ2 distributions to higher values 
(see Fig. 2(c)), much like that seen for τy distributions. 

5.2. Shear strength of shear bands 

From the preceding discussion, it is evident that τ2 data for BMGs, 
obtained from spherical indenters, corresponds to the stress required to 
nucleate a fresh shear band along an existing shear band. Recall Eq. (3)- 
(5), where τ2 is referred to as the maximum shear stress at which the 
pop-in occurs. Therefore, τ2 provides an estimate of the dispersion in the 
shear strength of a shear band. The strength of the shear band is esti
mated to be 8–11% lower than the strength of the undeformed BMG, as 
τ2 distributions for as-cast BMGs are lower than that of τy by the same 
extent. Similarly, the strength of the shear band in structurally relaxed 
BMGs is 15–17% lower than that of the undeformed material. 

Previously, some studies have estimated the softening of the material 
inside and around a shear band by different methods [5,51–55]. 
Bhowmik et al. [53] used the bonded interface technique to measure the 
hardness of the sub-surface shear band morphology underneath a 
Vickers indent. They observed that the hardness of the regions with 
shear bands is 10–16% lower than that of the undeformed BMG, which is 
similar to what is observed in our study. Bei et al. [56] observed a similar 
reduction in hardness of the shear banded region in a BMG that was 
subjected to uniaxial compression. In a follow-up study, Yoo et al. [5], 
utilizing the same bonded interface method, determined that the 
reduction in hardness of the shear band compared to that of the unde
formed BMG is always ~16–19% irrespective of its structural state. The 
fact that the results of this study match closely with those in the 

Fig. 4. Contours of τmax in the material calculated from the Hertzian contact 
relations for a sphere in elastic contact with a flat surface. 

P. Saini et al.                                                                                                                                                                                                                                    



Materialia 31 (2023) 101862

8

above-mentioned reports is surprising as they have all been presented 
with the caveat that the hardness estimates on the shear band is likely to 
also include contributions from the surrounding undeformed matrix. 

Alternately, Pan et al. [52] performed nanoindentation tests directly 
over shear bands formed on compression samples and observed that 
their hardness is 36% lower than that of the undeformed BMG. However, 
their result appears to composition-specific as other shear band char
acteristics measured by them in their study, such as the shear band 
thickness, were considerably different than those reported in the liter
ature [31,57,58]. In another study, Nekouie et al. [54] estimated of the 
hardness of the material inside a shear band by performing hardness 
tests on fracture surfaces of a 3-point bend-tested BMG, providing the 
rationale that the fracture surfaces effectively represent the faces of a 
shear band. They noted that the hardness of the fractured surface is 93% 
lesser than the hardness of the undeformed BMG. The likely reason for 
this large discrepancy in the measured strength of the shear band 
generated during spherical tip indentation and that formed in a 3-point 
bend fracture test is the difference in the plastic strain accumulated with 
the shear band. Note that in a 3-point bend test, the shear band within 
which a crack propagates–leading to failure–accumulates a considerably 
high plastic strain of ~10% [47,59–67]. This strain is far higher than 
that accommodated within the first shear band formed under the 
indenter, which is ~2%. Since larger plastic strains induce greater 
atomic disorder and increased free volume within the shear band, their 
strength is also expected to decrease. As a consequence, reduction in the 
strength of the shear band in the 3-point bend fracture test is higher than 
that inside a shear band formed during indentation. In essence, results of 
the present study only provide an estimate of the reduction in the 
strength of an incipient shear band but not that of mature shear bands 
that have accumulated large plastic strains. 

6. Summary and conclusions 

In summary, a detailed statistical analysis of the distribution of the 
relative stress for post-yield plastic deformation, τ2, in BMGs reveals that 
they are best approximated by a three-parameter Weibull distribution. 
Also, τ2 distributions have a bimodal nature when higher Ri and higher, 
Ṗ or both, were employed. Both these observations are similar to those 
observed for the distribution of the shear yield strength, τy. Moreover, 
the characteristics of the KDEs of τ2 and τy are similar although the latter 
is shifted to slightly higher values compared to the former. While the 
origins of both these distributions were linked to shear band formation, 
for incipient plasticity, Hertzian contact stress distributions and their 
gradients determine the stress required to nucleate shear bands along 
potential trajectories. In contrast, in post yield plasticity, the second 
shear band prefers to nucleate at an existing shear band, which unex
pectedly, does not make the stress distribution more deterministic. This 
was attributed to the inherent heterogeneity in the strength of the ma
terial within the shear bands. On the basis of the relative differences 
between the KDEs of τ2 and τy, the average shear strength of the shear 
band in the as cast and structurally relaxed BMGs is estimated as 8–11% 
and 15–17% of that of the as cast and structurally relaxed BMGs, 
respectively. These values of the shear band strength match well will 
other studies in the literature and also provides a guideline for the ex
pected softening in the BMG, once plastic deformation initiates. 
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