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A B S T R A C T   

The hydrogen storage behavior and the microstructural features of AB-type Ti50Fe48V2 hydrogen storage alloys 
containing a small amount of cerium (Ce) were investigated to understand the effect of Ce addition during initial 
hydrogen absorption. The initial hydrogen absorption kinetics of the alloys improved significantly at room 
temperature with Ce addition, which exhibited no significant influence on the pressure-composition isotherms 
for hydrogen absorption and desorption. Fine spherical particles containing Ce, which were determined to be 
γ-Ce mixed with cerium oxide, were dispersed in the ordered body-centered cubic TiFe matrix. During the early 
stage of hydrogen absorption, small cracks were initiated around the Ce particles, likely caused by the volume 
expansion owing to the formation of ε-CeH2. Subsequently, many large cracks, believed to have formed owing to 
the hydrogenation of the TiFe matrix, propagated during further hydrogen absorption. Therefore, these Ce 
particles appear to play a crucial role by providing starting points for the initial hydrogenation, with this 
mechanism explaining the significant increase in the primary hydrogen absorption kinetics after Ce addition. 
Notably, some small pits were observed after partial hydrogen absorption, possibly attributed to the hydroge-
nation of Ce particles underneath the alloy surfaces.   

1. Introduction 

Solid-state hydrogen storage using metal hydrides has been recog-
nized as a safe and efficient method for storing hydrogen owing to its 
high volumetric density and operation under moderate pressures and 
temperatures. AB (such as TiFe), AB2 (such as ZrCr2, TiMn2, and TiCr2), 
and AB5 (such as LaNi5) type metal hydrides have been investigated as 
room-temperature hydrogen storage alloys. AB-type alloys exhibit some 
advantages, such as low material cost [1], high gravimetric density of 
hydrogen (1.9 wt%) [2], good sorption kinetics [3], and appropriate 
plateau pressure at room temperature [3,4]. However, the slow and 
difficult initial hydrogen absorption of the alloys is a major obstacle to 
their practical application owing to the native passivating surface oxide 
layers on the alloys. In addition, the initial hydrogen absorption (acti-
vation) conditions of the alloys have been considered too extreme for 

practical applications (such as several cycles at 400 ◦C and 65 bar of 
hydrogen) [5]. 

Previous studies suggested various methods for improving the initial 
hydrogen absorption of AB-type hydrogen storage alloys. For example, 
surface modification [6,7], ball milling [8–13], plastic deformation [14, 
15], and the addition of alloying elements such as transition [16–19] 
and rare-earth metals [3,20,21] have been reported to mitigate the 
initial hydrogen absorption problem. In particular, adding a small 
amount of rare earth metals is considered effective in accelerating the 
initial hydrogen absorption [3,20,21]. Despite the positive effects of 
rare-earth element addition, the role of these elements during the initial 
hydrogen absorption of alloys is still unclear, with only a few studies 
focusing on the initial hydrogen absorption mechanisms of the alloys. 

This study aims to investigate the effect of Ce addition on the 
hydrogen storage properties of AB-type Ti-Fe-V alloys, focusing on the 
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initial hydrogen absorption behavior. We investigated the microstruc-
tural features of the alloys during hydrogen absorption using various 
characterization techniques, such as X-ray diffraction (XRD), scanning 
electron microscopy (SEM) with energy dispersive X-ray spectroscopy 
(EDS), electron back-scattered diffraction (EBSD), transmission Kikuchi 
diffraction (TKD), and atomic force microscopy (AFM). In particular, we 
focused on the microstructural evolution of Ce particles dispersed in the 
alloys during the initial hydrogen absorption to understand the role of 
the particles during the initial hydrogenation. We attempted to deter-
mine the initial hydrogenation mechanism of the particles in the alloys. 

2. Experimental details 

2.1. Synthesis 

The starting materials were Ti (RND Korea, 99.995 %), Fe (KRT Lab, 
99.95 %), V (KRT Lab, 99.95 %), and Ce (Sigma-Aldrich, 99.9 %). Ce was 
immersed in anhydrous ethanol and sonicated to remove the mineral oil. 
Three alloys (Ce-0, Ce-1, and Ce-2) were prepared by arc button melting 
under an argon atmosphere. Buttons weighing approximately 25 g were 
remelted at least five times and turned over after each melting cycle to 
maximize compositional homogeneity. Zirconium was used as a getter to 
minimize oxygen contamination during melting. Parts of the as-cast 
button alloys were sealed using a quartz tube and then annealed at 
1000 ◦C for 7 d under vacuum to homogenize the as-cast button alloys. 
The composition of the annealed alloy samples was analyzed using 
inductively-coupled plasma mass spectrometry. Table 1 lists the com-
positions of the annealed alloys employed in this study. The base alloy 
composition was Ti50Fe48V2 (at%), with a small amount of Ce added to 
the base alloy (0, 0.80, and 1.27 at% in Ce-0, Ce-1, and Ce-2, 
respectively). 

2.2. Microstructural characterization 

The alloy samples were pulverized and characterized by XRD using a 
Bruker D8 Advance diffractometer with Cu Kα radiation. The phase 
constitution of the samples was quantified by Rietveld refinement using 
the DIFFRAC TOPAS software (version 5). The microstructures of the 
alloy samples were observed using field-emission SEM (Inspect F50, FEI 
Company) with EDS (X-Flash, Bruker Nano GmbH) and EBSD (e-Flash 
HR, Bruker Nano GmbH). The EBSD samples were prepared using an Ar 
ion milling system (IM5000CTC, Hitachi ). The EBSD results were 
analyzed using EBSD data reprocessing software (OIM Analysis, EDAX). 
In addition, TKD was conducted using a sample prepared using a focused 
ion beam (FIB, Nova 600 NanoLab, FEI) to analyze the second-phase 
particles in the samples. Kelvin probe force microscopy (KPFM) was 
performed using a commercial AFM (NX10, Park Systems) equipped 
with a lock-in amplifier (SR830, Stanford Research Systems) [22,23]. 
Conductive PtIr-coated tips (ATEC-EFM, Nanosensors) were used for the 
KPFM measurements. During KPFM analysis, the tip was raised to a lift 
height above the sample, and electrical excitations of 2 Vrms and 32 kHz 
were applied to the tip. 

2.3. Measurement of hydrogen storage properties 

The hydrogen storage properties of the annealed alloy samples were 
determined by measuring the initial hydrogen absorption kinetics using 
Sievert’s apparatus and pressure–composition isotherms (PCIs) using an 
automatic high-pressure volumetric analyzer (Particulate Systems). 
During the initial hydrogen absorption of the samples, the pressure was 
monitored for up to 120 h at 30 ◦C and 30 bar. Before the PCI mea-
surement, the samples were activated under the following steps: each 
sample was broken into a few millimeter pieces in air, with 0.5–2 g of 
each sample immediately charged into a stainless-steel reactor. The 
reactor was evacuated until the pressure decreased to approximately 1 
× 10–5 bar and 30 bar hydrogen was applied for 30 min for activation. 
The reactor was then evacuated for 1 h to remove the absorbed hydrogen 
from the activation. The PCI curves were then measured at 30 ◦C and up 
to 70 bar of hydrogen. 

3. Results 

Fig. 1a shows the initial hydrogen absorption profiles of the alloy 
samples at 30 ◦C. The pressure decrease in the profiles indicates the 
hydrogen absorption by the alloy. Adding V to the TiFe alloys enabled 
the hydrogenation at 30 bar of hydrogen (Ce-0), whereas a pure TiFe 
alloy hardly absorbs hydrogen at higher hydrogen pressures [24]. 
Moreover, Ce addition significantly accelerates the hydrogen absorption 
kinetics of the Ce-1 and Ce-2 samples. The PCI curves for hydrogen 

Table 1 
Composition of the prepared alloys (at%; the values in the brackets are in wt%).  

Alloy Ti Fe V Ce 

Ce-0 50.7 
(47.0) 

46.5 
(50.3) 

2.8 
(2.7) 

- 

Ce-1 50.47 
(46.13) 

46.4 
(49.47) 

2.33 
(2.27) 

0.80 
(2.13) 

Ce-2 50.57 
(45.83) 

46.00 
(48.67) 

2.17 
(2.13) 

1.27 
(3.40)  

Fig. 1. (a) Hydrogen pressure profiles of the Ce-0, Ce-1, and Ce-2 alloy samples 
during initial hydrogen absorption at 30 ◦C and that of a pure TiFe alloy, and 
(b) PCI curves of the Ce-0, Ce-1, and Ce-2 alloy samples at 30 ◦C. 
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absorption and desorption of the three alloys at 30 ◦C exhibit no sig-
nificant difference (Fig. 1b). The hydrogen capacity up to 70 bar is 
approximately 1.9 wt% hydrogen, higher than that of conventional 
AB5-type LaNi5 alloys (1.5 wt% hydrogen) [2], with good reversibility 
for both the absorption and desorption. Two-stage desorption plateau 
behavior is observed for all the alloys, whereas the plateau pressure for 
hydrogen absorption and desorption is between 1 and 10 bar. This 
two-stage behavior is associated with the sequential formation of TiFeH 
monohydride and TiFeH2 dihydride [25]. 

The XRD patterns of the alloy samples are shown in Fig. 2. The major 
phase is determined to be the TiFe phase with an ordered body-centered 
cubic (BCC) structure (CsCl structure), whereas a small amount of the 
γ-Ce phase with a face-centered cubic (FCC) structure is observed in the 
Ce-1 and Ce-2 samples. In the Ce-0 sample, a small amount of Ti2Fe with 
a cubic structure is observed. Furthermore, we conducted XRD analysis 
on the fully hydrogenated Ce-2 sample (Fig. 2d). This result indicates 
that the Ce phase hydrogenated into ε-CeH2 after hydrogen absorption. 
TiFeH (monohydride) and TiFeH2 (dihydride) are not observed after 
hydrogen absorption because they tend to easily decompose into TiFe 
under air at room temperature [25]. However, CeH2 is a stable hydride 
under the same conditions [26]. Table 2 lists the phase compositions of 
the XRD patterns quantified by the Rietveld refinement. The amount of 
Ce phase in the Ce-1 and Ce-2 samples was 1.5 and 3.3 wt%, respec-
tively, and the amount of CeH2 in the Ce-2 sample after hydrogen ab-
sorption is similar to that of the Ce phase in the Ce-2 sample. 

Fig. 3 shows the SEM-BSE images of the annealed alloy samples. Dark 
phases with a size of 3–20 µm are observed in the Ce-0 sample, which 
appears to be Ti2Fe as observed in the XRD pattern (Fig. 2a). However, 
bright spherical particles with a size ranging from hundreds of nm to 
10 µm are observed in the Ce-added samples, Ce-1 and Ce-2. These white 
particles appear to be the Ce phase observed in the XRD patterns (Fig. 2b 
and c) because phases with high atomic weights tend to be bright in the 
BSE images. Considering the compositional differences between the 
three alloys, the presence of the Ce particles appears to be responsible 
for the significant increase in the initial hydrogenation kinetics of the 
Ce-1 and Ce-2 samples compared with that of the Ce-0 sample (Fig. 1a). 
The number density of the Ce particles in the Ce-2 sample is slightly 
higher than that in Ce-1, which may explain the better kinetics of the Ce- 
2 sample than that of the Ce-1 sample. 

The SEM-EDS-EBSD analysis results for the Ce-2 sample prepared by 
ion milling are shown in Fig. 4. The images in Fig. 4b and c appear to be 
slightly expanded in the vertical direction because the sample was tilted 

by 70◦ for the EDS and EBSD measurements. Ce particles of various sizes 
are observed in the SEM image, with few particles located along the 
grain boundaries (Fig. 4a). The Ce EDS maps of the two large particles 
indicate that the overall Ce concentration is high (approximately 80 at 
%) even though the concentration is low (approximately 50 at%) in the Fig. 2. XRD patterns of the (a) Ce-0, (b) Ce-1, and (c) Ce-2 alloy samples, and 

(d) Ce-2 alloy sample hydrogenated for 40 h at 30 ◦C and 30 bar of hydrogen. 

Table 2 
Phase constitution of the annealed Ce-0, Ce-1, and Ce-2 alloy samples calculated 
by the Rietveld refinement and that of the Ce-2 alloy sample hydrogenated for 
40 h at 30 ◦C and 30 bar of hydrogen (wt%).  

Alloy TiFe Ti2Fe Ce CeH2 

Ce-0  97.6 2.4 - - 
Ce-1  98.5 - 1.5 - 
Ce-2  96.7 - 3.3 - 
Ce-2 after hydrogenation  96.7 - - 3.3  

Fig. 3. SEM-BSE images of the (a) Ce-0, (b) Ce-1, and (c) Ce-2 alloy samples.  
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small central region of the upper particle (Fig. 4b). As shown in Fig. 4c, 
the EBSD analysis reveals that the matrix phase is the TiFe phase and the 
particles consist of Ce and CeO2, corresponding to the low-Ce concen-
tration region, even though the analysis quality is poor even after the ion 
milling treatment. Considering the large regions of high Ce concentra-
tion in the particles, it can be concluded that the particles primarily 

consist of a metallic Ce phase and a small amount of CeO2. 

4. Discussion 

The TKD and EDS results for the Ce-2 sample are shown in Fig. 5. 
Phase identification of significant areas of the Ce particles was possible 

Fig. 4. (a) SEM image, (b) EDS Ce mapping, and (c) EBSD phase map of the Ce-2 alloy sample prepared by ion milling.  

Fig. 5. (a) SEM image, (b) TKD phase map, and (c) EDS elemental map of a Ce particle in the Ce-2 alloy sample with a thickness of approximately 50 nm prepared 
by FIB. 
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by TKD measurements. The TKD phase map confirms that the particles 
primarily consisted of the Ce phase surrounded by the TiFe matrix phase 
(Fig. 5b). The EDS mapping results of the same location indicate that the 
concentration of oxygen in the particles is as high as that of Ce. Ac-
cording to the phase diagram of the Ce-O system [27], the particles in 
the Ce-2 sample with this high concentration of oxygen should exist as 
liquid cerium and α-Ce2O3 during the heat treatment at 1000 ◦C. How-
ever, crystalline cerium oxide phases were not observed in the XRD re-
sults of both Ce-1 and Ce-2 samples (Fig. 2), although a very small 
amount of crystalline CeO2 was detected by the EBSD analysis (Fig. 4). 
Therefore, it is likely that amorphous cerium oxide, which is not 
detected by XRD, as well as γ-Ce supersaturated with oxygen formed in 
the particles during rapid cooling after the heat treatment at 1000 ◦C. In 
fact, Pan et al. [28] reported the presence of amorphous Ce2O3 in-
clusions in a ferritic stainless steel, which was furnace-cooled from 
1600 ◦C. The unidentified regions in the particles analyzed by 
EBSD/TKD might correspond to amorphous cerium oxide. If the parti-
cles were fully cerium oxides, they would not be easily hydrogenated 
into CeH2 during hydrogen absorption, as observed after hydrogen ab-
sorption of the Ce-2 sample (Fig. 2d). For example, the Gibbs free energy 
change for the hydrogenation of CeO2 at room temperature was deter-
mined to be significantly higher than 389 kJ mol–1 [29].  

CeO2 + 3 H2 → CeH2 + 2 H2O                                                         (1) 

Naturally, surface oxide layers would also form on the Ce particles 
located on the alloy surfaces, when the samples are exposed to air. 
Nevertheless, the Ce particles might be relatively easily hydrogenated 
[30], because it has been quite well known that the surfaces oxide layers 
formed on metallic Ce do not exhibit a passivating feature [31,32]. 

SEM-BSE images of the Ce-2 sample partially hydrogenated at 30 ◦C 
and 30 bar were investigated (Fig. 6) to understand the effect of the Ce 
particles on the early stage of the hydrogen absorption of the alloys. 
Small cracks that appeared to originate from the particles are observed 
in the Ce-2 sample hydrogenated for 1.5 h (Fig. 6a). Crack formation 
during hydrogen absorption appeared to be caused by volume expansion 
owing to the hydrogenation of Ce into CeH2, reaching approximately 17 
%. The strong hydrogen affinity of Ce appears to cause the hydrogena-
tion of Ce particles earlier than the TiFe matrix [3], despite the high 
oxygen concentration in the particles. Several long cracks are observed 
in the TiFe matrix and around the particles for the sample hydrogenated 
for 12 h (Fig. 6b and c); several small cracks are also observed inside 
some of the particles in Fig. 6c. The matrix cracks appear to be caused by 
volume expansion owing to the subsequent hydrogenation of the TiFe 
matrix, i.e., the formation of TiFeH and TiFeH2, reaching approximately 
12 % and 17 %, respectively, with respect to the TiFe phase. Therefore, it 
can be concluded that the Ce particles play a crucial role during the 
initial hydrogen absorption of the alloys by providing the starting 
points, where cracks are initiated owing to the formation of CeH2. These 
initial cracks around the particles contributed to the exposure of fresh 
surfaces of the TiFe matrix without passivating oxide layers, considered 
major obstacles to the initial hydrogen absorption of AB-type hydrogen 
storage alloys. Subsequently, the TiFe matrix is hydrogenated by the 
hydrogen supplied through the fresh surfaces, and the hydrogenation of 
the TiFe phase to TiFeH or TiFeH2 also leads to new cracks. The repe-
tition of this process accelerates the propagation of several cracks and 
hydrogen absorption. This mechanism may explain why Ce addition 
significantly increases the hydrogen absorption kinetics of the alloys.  
Fig. 7 shows a schematic of the hydrogen absorption mechanism of the 
alloys. 

Notably, some pits with a size of 5–20 µm are occasionally observed 
in the Ce-2 sample partially hydrogenated for 2.5 h. SEM images of the 
sample titled 70◦ clearly exhibit the morphology of these pits (Fig. 8). 
Fine particles, assumed to be CeH2, were observed at the center of the 
pits. Similar to the SEM images, a pit is observed in the AFM topography 
image (Fig. 9a). The height of the pit is significantly lower than that of 

Fig. 6. (a) SEM image of the Ce-2 alloy sample hydrogenated for 1.5 h at 30 ◦C 
and 30 bar of hydrogen, and (b) low, and (c) high magnification images of the 
Ce-2 alloy sample hydrogenated for 12 h under the same conditions. The black 
and red arrows indicate the cracks initiated at the particles and the particles 
containing several cracks, respectively. 
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the TiFe matrix (approximately 800 nm). Notably, two distinct signal 
levels were clearly visible in the surface potential (Fig. 9b). In particular, 
the pit center clearly exhibited a higher surface potential, indicating that 
CeH2 was located at the pit center. It is difficult to understand why these 
pits were formed during hydrogen absorption of the alloy, possibly 
associated with the hydride formation of the Ce particles underneath the 
alloy surfaces, which is promoted by the hydrogen supplied through the 

cracks propagated from the surfaces during hydrogen absorption. Vol-
ume expansion owing to hydride formation underneath the surfaces may 
induce significant stress that can partially tear out the surfaces, even-
tually leaving pits on the surfaces. 

5. Conclusions 

The hydrogen-storage behavior and microstructural features of AB- 
type Ti50Fe48V2 hydrogen-storage alloys containing small amounts of 
Ce were investigated. Ce addition significantly improved the hydrogen 
absorption kinetics of the alloys at room temperature in situations where 
slow and difficult initial hydrogen absorption is known to be a signifi-
cant drawback of AB-type hydrogen storage alloys because of their 
passivating surface oxide layers. In addition, fine spherical particles 
were dispersed in the TiFe matrix of the alloys containing Ce, which 
were determined to be γ-Ce with an FCC structure mixed with cerium 
oxide by XRD and SEM-EBSD-TKD analyses. The Ce particles appeared 
to play a crucial role by providing starting points for the initial hydrogen 
absorption of the alloys. During the early stage of the hydrogen 

Fig. 7. Schematic illustration of the role of the Ce particle during initial hydrogen absorption.  

Fig. 8. (a) SEM image of pits formed in the Ce-2 alloy sample hydrogenated for 
2.5 h at 30 ◦C and 30 bar of hydrogen, which was tilted 70◦, and (b) magnified 
image of the white rectangular box in (a). 

Fig. 9. (a) AFM topography, (b) KPFM surface potential image of the pit in the 
Ce-2 alloy sample, and (c) area line profiles of the height and surface potential 
obtained from the rectangular boxes in (a) and (b). 
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absorption, the Ce particles were hydrogenated into ε-CeH2 earlier than 
the TiFe matrix, initiating small cracks around the particles owing to the 
volume expansion of the hydride formation, which reached approxi-
mately 17 %. These cracks appeared to contribute to the subsequent 
hydrogenation of the TiFe matrix by exposing the fresh alloy surfaces to 
hydrogen. It was observed that several large cracks formed and propa-
gated, likely owing to the volume expansion of the matrix hydrogena-
tion during hydrogen absorption. This mechanism appeared responsible 
for the significant increase in the hydrogen absorption kinetics of the 
alloys containing Ce. In addition, small pits were occasionally observed 
with particles at their centers in the partially hydrogenated alloy sample. 
The formation of these pits appeared to be associated with the hydro-
genation of Ce particles to CeH2 underneath the alloy surfaces, although 
the formation mechanism is not yet clearly understood. 
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