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Note: Due to the extensive use of mathematical equations in the paper, some of symbols used in 

the main manuscript may have been repeated or used to define some other variable in the 

supplementary information (SI). To avoid confusion, the nomenclature provided below serves as 

a reference only for the symbols used in SI. 

 

Nomenclature 

𝒟  Dataset 

𝑑  Data point 

𝑓(𝑥)  An arbitrary probability density function used for fitting 𝒟 

𝜃  Parameter space for 𝑓(𝑥) 

μ Mean of a gaussian distribution  

S Standard deviation of a gaussian distribution 

(. )̂  Maximum Likelihood estimate of any parameter, such as 𝜃, μ, σ 

𝐿(. )  Likelihood function 

𝜓, 𝜆 Subspaces of 𝜃  

𝐿𝑝(. )  Profile likelihood.  



n Sample size 

𝛽  Scale parameter 

𝑚  Weibull modulus 

𝛼  Location parameter of Weibull distribution 

𝑓𝑀(𝑥)  Density function of a mixture model 

𝑝  Proportion of a component distribution in a mixture model 

𝑧𝑖  Indicator variable corresponding to every element of 𝒟 

𝒞  Organized and complete data 

𝐸(⋅)  Expectation operator 

𝜙  Choice of 𝜃 

𝑄(. )  Expected likelihood 

𝑐𝑖
𝑘  Alternate notation for 𝐸⟨𝑧𝑖|𝜃

𝑘⟩ 

s Vector representing collection of sample sizes 

si ith sample size in s 

𝜃0  Initial parameter space 

𝜃𝑚𝑒𝑎𝑛 Mean of 𝜃 of s 

𝜃𝑣𝑎𝑟 Variance of 𝜃 of s 

K Absolute maximum distance between the empirical distribution function 

and the cumulative distribution function of the reference distribution 

H0 Null hypothesis 

αs Significance level 

Kcrit Critical value of K 

p-

value 

Threshold value of αs 

Vd Total deformed volume underneath the indenter 

�̅�𝑑
𝑦

  Average deformed volume of the material at first pop-in 

Ve Fraction of �̅�𝑑
𝑦

which has optimum conditions for shear band formation 

ρd Density of defects 

NSTZ Number of activable STZs 

P Load 



h Displacement 

Ri Indenter radius 

𝐸𝑟
̅̅ ̅  Reduced modulus 

 Poisson’s ratio 

𝐸�̅�  Elastic modulus of the indenter 

𝐸𝑠
̅̅ ̅  Elastic modulus of the sample 

𝑟′, 𝑧′ Normalized spacial coordinates for stress contours 

Pm Mean pressure 

A Contact radius of indenter with surface 

u’ Normalized displacement 

σ’ Normalized Stress  

τ’ Normalized Shear stress 

𝜏𝑚𝑎𝑥  Maximum of maximum shear stress field 

𝜎𝑚
′   Hydrostatic stress 

P Indentation load 

PFP First pop-in load 

�̇� Loading rate 

h Indentation depth 

Ri Indenter tip radius 

τ Shear stress 

y Shear yield strength 

τmax Maximum shear stress underneath the spherical indenter 

𝜏𝑦̅̅ ̅  Mean (or average) value of the shear yield strength 

 

 

S 1. Statistical procedures employed 

S1.1 Sample size optimization procedure 

A vector, 𝑠 = [𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑚] is chosen, which signifies a collection of sample sizes. Then, 𝑁 

random samples of datapoints corresponding to each sample size 𝑠𝑖 are generated from 𝑓(𝑑|𝜃0) 

where d and 𝜃0 represent data and initial parameter space, respectively. For every sample, 𝜃 is 



calculated. Then, the mean, 𝜃𝑚𝑒𝑎𝑛 , and variance, 𝜃𝑣𝑎𝑟 , for each sample size 𝑠𝑖, is determined 

from the following: 

 

 𝜃𝑚𝑒𝑎𝑛 =
1

𝑁
∑ 𝜃𝑗

𝑁
𝑗=1 ,         ∀𝑠𝑖        (S1) 

 𝜃𝑣𝑎𝑟 =
1

𝑁
∑ (𝜃𝑗 − 𝜃0)

2𝑁
𝑗=1 ,         ∀𝑠𝑖.       (S2) 

 

With increasing sample size, 𝜃𝑚𝑒𝑎𝑛  would tend to 𝜃0  whereas 𝜃𝑣𝑎𝑟  would tend to zero 

asymptotically and the optimum sample size for the chosen statistical model corresponds to one 

where (𝜃𝑚𝑒𝑎𝑛 − 𝜃0) or 𝜃𝑣𝑎𝑟 is relatively small. The sample size optimization test for the single 

component 3-parameter Weibull model is shown in Fig. S1. The largest spread observed is in the 

scale parameter, which is 10% of the reference value. We have conducted similar sample 

optimization tests for all the statistical models considered in this study (for both single 

component and two component distributions). 

 

 

Fig. S1. Variations of (a) 𝜃𝑚𝑒𝑎𝑛 and (b) 𝜃𝑣𝑎𝑟 with the sample size, si for the different parameters 

of 3-parameter Weibull model (𝜃0: Location parameter, α = 2, Scale Parameter, β = 1, Weibull 

Modulus, m = 2). 𝜃𝑣𝑎𝑟  is negligible for all values of si > 100 for all the sample optimization tests 

conducted in this study. 

 

 

S1.2.1 Statistical inference through maximum likelihood (ML) approach: 



Let 𝒟 = {𝑑} be a given set of data, where d represents individual data points. 𝒟 is fitted with an 

arbitrary probability density function 𝑓(𝑥|𝜃), where 𝜃 is the parameter space. For example, if we 

choose Gaussian distribution as the fitting model, then 

 𝑓(𝑥|𝜇, 𝑆) =
1

𝑆√2𝜋
𝑒−

1

2
(

𝑥−𝜇

𝑆
)

2

,        (S3)  

where 𝜇 and S are the mean and standard deviation. Note that in this example, 𝜇 and S, represent 

𝜃 for the Gaussian distribution. For a given 𝒟 and 𝑓(𝑥|𝜃), we are interested in finding the best 

fitting parameters, 𝜃, which are also referred to as Maximum Likelihood Estimates (MLEs). The 

ML approach defines a likelihood function, 𝐿(𝜃), for 𝑓(𝑥|𝜃), as follows, 

 𝐿(𝜃|𝒟) = ∏ 𝑓𝑖 (𝑑𝑖|𝜃).        (S4) 

Note that L is a function of 𝜃  for a given 𝒟 . Our desired fitting parameters or 𝜃 are the 

parameters for which the 𝐿(𝜃) attains global maximum. 

 

S1.2.2 Concept of Profile Likelihood: 

If 𝜓  and 𝜆  are subspaces of 𝜃 , such that, 𝜓 ∪ 𝜆 = 𝜃 , the profile likelihood of 𝜓 , 𝐿𝑝(𝜓) , is 

defined from the following. (i) Two functions 𝐿𝜓(𝜆) = 𝐿(𝜆|𝜓) and 𝐿𝜆(𝜓) = 𝐿(𝜓|𝜆), are defined 

as the likelihood functions, where one parameter is held fixed while the other is varied. (ii) �̂�𝜓 is 

defined as the value of 𝜆 at which the function 𝐿𝜓(𝜆) attains a global maximum, i.e., �̂�𝜓 =

𝑎𝑟𝑔𝑚𝑎𝑥𝜆𝐿𝜓(𝜆) . Then, the profile likelihood 𝐿𝑝(𝜓)  is 𝐿�̂�𝜓
(𝜓) . From this, 𝜃  is deduced as 

follows. Let �̂�  be the parameter 𝜓  for which the profile likelihood 𝐿𝑝(𝜓)  attains a global 

maximum. Then 𝜃 = �̂� ∪ �̂��̂�. 

 

S1.2.3. MLE for single component distribution functions  

For Gaussian and Lognormal distributions, the probability density functions (PDFs), f(x), are 

given as: 

 

 𝑓(𝑥) =
1

𝜎√2𝜋
 exp (−

(𝑥−𝜇)2

2𝜎2
)        (S5) 



 𝑓 (𝑥) =
1

𝑥𝜎√2𝜋
exp (−

(𝑙𝑛 𝑥−𝜇)2

2𝜎2
) ,     𝑥 > 0      (S6) 

 

where  and  are mean and standard deviation. In the case of 3 parameter Weibull distribution, 

f(x) is given as, 

 𝑓(𝑥) = {
𝑚

𝛽
(

𝑥−𝛼

𝛽
)

𝑚−1

exp (− (
𝑥−𝛼

𝛽
)

𝑚

) ,        𝑥 ≥ 0

0                                      ,                      𝑥 < 0
     (S7) 

 

where  and  are is location and scale parameters respectively, and m is the Weibull modulus. 

For 2 parameter Weibull distribution, 𝛼 = 0. The PDF for the two-component mixture models, 

fM, is obtained by weighted linear combination of each component, as following: 

 

 𝑓𝑀(𝑥|𝑝, 𝜃1, 𝜃2) = 𝑝𝑓(𝑥|𝜃1) + (1 − 𝑝)𝑓(𝑥|𝜃2)     (S8) 

 

where 𝑝 is the proportion of each component models of the mixture 𝑓(𝑥|𝜃1) and 𝑓(𝑥|𝜃2); 0 <

𝑝 < 1.  

 

 

Closed form solutions of MLEs exist for Gaussian and Lognormal distributions and are as 

follows.  

MLE for Gaussian distribution: 

 �̂� =
1

𝑛
∑ 𝑑𝑖

𝑛
𝑖=1  ,       �̂�2 =

1

𝑛
∑ (𝑑𝑖 − �̂�)

2𝑛
𝑖=1      (S9) 

 

MLE for Lognormal distribution: 

 �̂� =
1

𝑛
∑ ln 𝑑𝑖

𝑛
𝑖=1 ,       �̂�2 =

1

𝑛
∑ (ln 𝑑𝑖 − �̂�)

2𝑛
𝑖=1 ,     (S10) 

where n is the sample size. 

 

MLE for 2-parameter Weibull distribution: 



This model does not have a closed form solution and must be obtained via a numerical approach. 

m and β are Weibull modulus and scale parameter, respectively. �̂�  is estimated iteratively 

through Regula Falsi from the equation: 

 
1

�̂�
−

∑ 𝑢𝑖
�̂� ln 𝑑𝑖

𝑛
𝑖=1

∑ 𝑑𝑖
�̂�𝑛

𝑖=1

+
∑ ln 𝑑𝑖

𝑛
𝑖=1

𝑛
= 0, and       (S11) 

 �̂��̂� =
∑ 𝑑𝑖

�̂�𝑛
𝑖=1

𝑛
          (S12) 

 

MLE for the 3-parameter Weibull distribution: 

For a known location parameter 𝛼, the 3-parameter Weibull distribution is equivalent to the 2-

parameter Weibull distribution with 𝑑𝑖 substituted by 𝑑𝑖 − 𝛼. Since 𝛼 is a non-regular parameter1, 

�̂� cannot be estimated via differential calculus. Hence, we estimate �̂� (and corresponding �̂� and 

�̂�  from eq. S11 and S12) by studying the profile likelihood of 𝛼  in the interval [0, 𝑑1 ] 

discretized in steps of 0.01, where 𝑑1 is the first order statistic. 

 

S1.2.4. MLE for mixture models via Expectation–Maximization (EM) Algorithm 

𝒟 is fitted with a mixture model with density function, 𝑓𝑀(𝑥), of the form 𝑓𝑀(𝑥|𝑝, 𝜃1, 𝜃2) =

𝑝𝑓(𝑥|𝜃1) + (1 − 𝑝)𝑓(𝑥|𝜃2),. In this study a simple mixture model, with two components, has 

been chosen. Also, the component models are of the same type albeit with different parameters, 

𝜃1 and 𝜃2. Note that, in general, the application of EM Algorithm is not restricted to this form of 

a mixture model. 𝑓𝑀(𝑥) has twice the number of parameters as the component models in addition 

to 𝑝. Therefore, maximization of the Likelihood function of 𝑓𝑀(𝑥) over such parameter space is 

cumbersome. This problem of ML estimation is assuaged by the EM Algorithm which enables us 

to exploit the numerical simplicity of finding the MLEs of the component models. 

In EM Algorithm, 𝒟 is considered incomplete as we do not know from which of the two mixture 

components an element in 𝒟 is sampled. Therefore, we augment 𝒟 with an indicator variable, 𝑧𝑖, 

corresponding to every element of 𝒟. The resultant organized and complete data is denoted as 𝒞. 

 𝑧𝑖|𝒟 = {
1,  if 𝑑𝑖 ∼ 𝑓(𝑥|𝜃1)
0,  if 𝑑𝑖 ∼ 𝑓(𝑥|𝜃2)

.       (S13) 

 
1 Regular parameter is one which satisfies the regularity conditions provided in Ref.[11]. 



In the above equations, the operator “∼” implies that the variable on LHS was sampled from the 

component in the RHS. The expectation of the indicator variable 𝑧𝑖, given 𝒟, for a certain choice 

of parameters �̂�, 𝜃1̂, 𝜃2̂ ∈ 𝜙 is defined as, 

 𝐸𝜙(𝑧𝑖|𝒟) =
𝑝𝑓(𝑑𝑖|𝜃1̂)

𝑓𝑀(𝑑𝑖|𝑝,𝜃1̂,𝜃2̂)
,         (S14) 

where 𝐸(⋅) is the expectation operator and its subscript represents the choice of 𝜃 (which is 𝜙 in 

this case) on which the operation is performed. From the definition of 𝑧𝑖, the likelihood function 

for 𝑓𝑀(𝑥|𝜃), given 𝒞, can be expressed as, 

 𝐿(𝜃|𝒞) = ∏ 𝑓𝑖 (𝑑𝑖|𝜃1)𝑧𝑖𝑓(𝑑𝑖|𝜃2)(1−𝑧𝑖),       (S15) 

where 𝑝, 𝜃1, 𝜃2 ∈ 𝜃 . Note that 𝐿(𝜃|𝒞)  can now be written as 𝐿(𝜃1, 𝜃2|𝒞) . We define the 

Expected Likelihood, 𝑄(𝜃|𝜙), of 𝐿(𝜃|𝒞), given 𝒟, for a certain choice of parameters, 𝜙, as, 

 𝑄(𝜃|𝜙) = 𝐸𝜙(𝐿(𝜃|𝒞)|𝒟).        (S16) 

Since 𝑧𝑖 is the only random variable in eq. S15, the expectation operator will only operate on it 

when the expectation is estimated. Therefore, we can write, 

 log(𝑄(𝜃|𝜙)) = ∑ 𝐸𝜙𝑖 (𝑧𝑖|𝒟)𝑙𝑜𝑔(𝑓(𝑑𝑖|𝜃1)) + (1 − 𝐸𝜙(𝑧𝑖|𝒟))𝑙𝑜𝑔(𝑓(𝑑𝑖|𝜃2)). (S17) 

Given a certain choice of parameters, 𝜙, 𝑄(𝜃|𝜙) can be formulated. This is referred to as the 

Expectation (or E) step of the EM algorithm. 

The choice of 𝜃  that has to be used as 𝜙 and the utility of E-step in finding 𝜃  will now be 

addressed. An iterative algorithm is formulated, where 𝜙 = 𝜙1 is the initial guess of the fitting 

parameters of 𝑓𝑀(𝑥|𝜃), given 𝒟, and is designated as 𝜃𝑖𝑛𝑖𝑡. On substituting the values of 𝜃𝑖𝑛𝑖𝑡 in 

eq. S14 and S17, the expected likelihood 𝑄(𝜃|𝜃𝑖𝑛𝑖𝑡) can be formulated. Then, the 𝜃1̂ and 𝜃2̂ that 

maximizes 𝑙𝑜𝑔(𝑄(𝜃|𝜙)) can be determined. This is referred to as the Maximization (or M) step. 

Since the first and second term in eq. S17 depends only on 𝜃1 and 𝜃2, the maximization can be 

decoupled to two parts, one for the MLEs 𝜃1̂ and other for the MLEs 𝜃2̂, which simplifies the 

maximization step.  



Subsequently, we update 𝜙 from 𝜙1(=𝜃𝑖𝑛𝑖𝑡) to 𝜙2 with the MLEs 𝜃1̂ and 𝜃2̂, calculated from the 

previous step and �̂� = ∑ 𝐸𝜙1𝑖 (𝑧𝑖)/𝑛(𝒟) as proportion, where 𝑛(𝒟) is the number of elements in 

the dataset 𝒟. Using newly updated 𝜙2, we formulate the next E-step and then perform the M-

step to update 𝜙2 to 𝜙3 and so on, until convergence is attained. In the present study, we define 

convergence to occur when the Eucledian distance between 𝜙𝑘 and 𝜙𝑘+1 is below a tolerance of 

10−4 , where 𝑘 is the iteration counter. Our solution for 𝜃 would then be 𝜙𝑘+1. In Fig. S2, the 

EM algorithm is illustrated with a flowchart. 



 

Fig. S2. A Flowchart describing the implementation of the EM Algorithm. 

It must be acknowledged that the output of the EM algorithm is dependent on the 

appropriateness of choice of 𝜙1. In the present study, instead of arbitrarily guessing 𝜙1, Fuzzy 



C-Means Clustering algorithm (integrated in Matlab) [2] is employed, whereby the membership 

grades were directly assigned to 𝐸𝜙1(𝑧𝑖) for the 1st iteration. 

The M-step for 2-component mixture of the different statistical models used in this study are 

discussed next. To maintain brevity, 𝐸⟨𝑧𝑖|𝜃
𝑘⟩ is denoted as 𝑐𝑖

𝑘 in the rest of the text. 

 

M-step for 2-component mixture Gaussian distribution: 

 �̂�𝑘 =
∑ 𝑐𝑖

𝑘𝑑𝑖
𝑛
𝑖=1

∑ 𝑐𝑖
𝑘𝑛

𝑖=1

 ,           �̂�𝑘 = √
∑ 𝑐𝑖

𝑘(𝑑𝑖−�̂�𝑘)
2𝑛

𝑖=1

∑ 𝑐𝑖
𝑘𝑛

𝑖=1

      (S18) 

 

M-step for 2-component mixture Lognormal distribution: 

 �̂�𝑘 =
∑ 𝑐𝑖

𝑘 ln 𝑑𝑖
𝑛
𝑖=1

∑ 𝑐𝑖
𝑘𝑛

𝑖=1

 ,           �̂�𝑘 = √
∑ 𝑐𝑖

𝑘(ln 𝑑𝑖−�̂�𝑘)
2𝑛

𝑖=1

∑ 𝑐𝑖
𝑘𝑛

𝑖=1

     (S19) 

 

M-step for 2-component mixture 2-parameter Weibull distribution: 

�̂�𝑘is estimated iteratively through Regula Falsi from the following equations. 

 
1

�̂�𝑘 −
∑ 𝑐𝑖

𝑘𝑑𝑖
�̂�𝑘

ln 𝑑𝑖
𝑛
𝑖=1

∑ 𝑐𝑖
𝑘𝑑𝑖

�̂�𝑘𝑛
𝑖=1

+
∑ 𝑐𝑖

𝑘 ln 𝑑𝑖
𝑛
𝑖=1

∑ 𝑐𝑖
𝑘𝑛

𝑖=1

= 0      (S20) 

 �̂�𝑘 = √
∑ 𝑐𝑖

𝑘𝑑𝑖
�̂�𝑘𝑛

𝑖=1

∑ 𝑐𝑖
𝑘𝑛

𝑖=1

�̂�𝑘

         (S21) 

 

M-step for 2-component mixture 3-parameter Weibull distribution: 

The 2-component mixture 3-parameter Weibull distribution has two location parameters, 𝛼1 and 

𝛼2, both of which are non-regular. The domain of these parameters are defined as 0 ≤ 𝛼1 <

min (𝑑1, 𝛼2) and 0 ≤ 𝛼2 < 𝑑𝑛−2, where 𝑑1 < 𝑑2 < ⋯ < 𝑑𝑛 (depicted in Fig. S3). Therefore, we 

have studied the profile likelihood surface of (𝛼1, 𝛼2) to estimate the MLEs for this mixture 

model. However, the implementation of this scheme entails the following intricacies. 

The profile likelihood of 𝛼2 is discontinuous at every 𝛼2 = 𝑑𝑖. However, the profile likelihood 

of 𝛼1 given any 𝛼2 is never discontinuous. So we discretize 𝛼2 piecewise over its domain in the 

following intervals: [0 𝑑1 ), [ 𝑑1𝑑2 ), …, [ 𝑑𝑖𝑑𝑖+1 ), …, [ 𝑑𝑛−3𝑑𝑛−2 ). Each interval of 𝛼2  is 



discretized in steps of 0.01 (if length of an interval is less than 0.03 then the interval is 

discretized in 3 sub-intervals). Now for every 𝛼2, we study the profile likelihood of 𝛼1 over the 

domain 0 ≤ 𝛼1 < min (𝑑1, 𝛼2) discretized in steps of 0.01, whereby we get the estimates of 𝛼1̂, 

�̂� and �̂� (�̂� and �̂� are estimated at fixed (𝛼1,𝛼2) via the EM algorithm). This, in turn, leads to 

the profile likelihood of 𝛼2 , which is sup
𝛼1,𝛽,𝑚

𝐿(𝛼1, 𝛼2, 𝛽, 𝑚|𝒟). Global maxima of the profile 

likelihood of 𝛼2 so estimated corresponds to the MLEs of the 2-component mixture 3-parameter 

Weibull distribution. 

 

 

Fig. S3. Domain of (𝛼1, 𝛼2) over which the profile likelihood of these non-regular parameters is 

examined for ML estimation of the 2-component 3-parameter Weibull model. 

 

S1.3. Akaike Information Criterion (AIC) 

 

The values of AIC were computed using the following equation: 

 

 AIC = −2ln𝐿(𝜃) + 2𝛾,         (S22) 

 

where 𝛾 is the number of independent parameters in the model and 𝐿(𝜃)  is the maximum 

likelihood. The model which yields the lowest AIC for a given dataset is the best fitting model for 

that particular dataset.  

 

S1.4. Kolmogorov-Smirnov (KS) test 



The KS test is a non-parametric hypothesis test that determines whether a sample data can be 

compared with specific distributions. This test is primarily preferred over other goodness-of-fit 

tests because it is exact and the test statistic obtained is independent of the underlying cumulative 

distribution function tested [1]. The statistic obtained from this test is the absolute maximum 

distance between the empirical distribution function (i.e. obtained from experimental data) and 

the cumulative distribution function of the reference distribution, say K. Thereafter, based on the 

value of K, the null hypothesis, H0, which is the assertion that the empirical data follows the 

reference distribution, can be tested. Note that the closer the value of K is to 0, the higher the 

likelihood that the empirical distribution follows the reference distribution. However, the 

acceptance or rejection of H0 will depend on the tolerance (confidence bounds) chosen for the 

value of K. This tolerance is also known as significance level, αs. In most applications αs is 

chosen as 5% although a stricter value of 1% can also be chosen for critical cases. Then, for each 

αs, a table containing the critical values of K, Kcrit, for different data sizes is created. H0 is 

accepted for all measured values of K that are lesser than Kcrit at the chosen αs [2]. Alternately, 

this hypothesis testing can also be performed on the basis of the p-value obtained from the KS 

test. The p-value denotes the threshold value of αs such that H0 will be accepted for all values of 

αs that are less than the p-value. For instance, if p = 0.02, H0 will be accepted at all αs < 0.02 and 

rejected for αs > 0.02. In the current study, αs is chosen as 0.05 and hence if the KS test for any 

specific model on the datasets returns p < 0.05, that particular model can be rejected2. 

 

S2. Number of activable STZs 

An estimate of the total deformed volume, Vd, at any given h is [3]: 

 

 𝑉d =
𝜋ℎ

6
[3𝑅i

2 + ℎ2].          (S23) 

 

For a spherical indenter [3], 

 

 𝑃 =
4

3
𝐸𝑟√𝑅iℎ3.         (S24) 

 
2Here one must take note of the caveat that the KS test, by virtue of being a hypothesis test, tells whether a model is 

acceptable or not; it never comments on how good a model fits the data. Therefore, comparing p-value of KS test is 

not a model selection procedure. 



 

Combining Eqs. (S23) and (S24) to eliminate h, gives Vd as, 

 

 𝑉𝑑 =
𝜋

6
[3𝑅𝑖

2.
1

𝑅i

1
3

. [
3𝑃

4𝐸𝑟
]

2

3
+

1

𝑅i
[

3𝑃

4𝐸𝑟
]

2

].       (S25) 

 

For P = PFP and τy = τmax, the average total volume of the material under the indenter that 

deforms at PFP, �̅�𝑑
𝑦

, can now be written in terms of the mean value of shear stress, 𝜏y̅, as (see 

section 2),  

 

 �̅�𝑑
𝑦

=
𝜋

6
[85.69𝑅𝑖

7

3. [
𝜏𝑦̅̅̅̅

𝑅𝑖𝐸𝑟
]

2

+ 2.3 × 104𝑅𝑖 [(
𝜏𝑦̅̅̅̅

𝑅𝑖𝐸𝑟
)

3

]
2

].    (S26) 

 

Using Eq. (S25), an estimate of �̅�𝑑
𝑦

 can be obtained for indenters with different Ri. However, 

only a small fraction of this volume, designated as representative volume, Ve, which is 

approximately equal to ~ 0.01 �̅�𝑑
𝑦

, provides the optimum conditions for nucleating a shear band 

[4]. Therefore, any STZ activity, which affects the formation of a shear band, must occur within 

Ve. Assuming the density of defects, ρd, to be approximately equal to 1020 m-3 [5,6], the number 

of activable STZs, NSTZ, is given as NSTZ = Ve . ρd. Table S1 lists the deformed volumes and NSTZ 

for 3 representative datasets and their corresponding Ri. In specimens indented by a large 

indenter (Ri ~ 31.5 µm), 388 STZs can potentially get activated whereas only 6 STZs can be 

accessed during a single indentation when a smaller tip (Ri ~ 5.75µm) is used. 

 

Dataset Ri 

(µm) 

�̇� 

(mN/s) 

Er 

(GPa) 

𝝉𝒚̅̅ ̅ 

(GPa) 

�̅�𝒅
𝒚
 

(m3) 

Ve (m3) Number 

of STZs, 

NSTZ 

AC1 31.5 1 89 1.5 3.882x10-16 3.882x10-18 388 

AC5 5.75 1 89 2.4 6.035x10-18 6.035x10-20 6 

A1 1 0.4 97.9 3.5 5.572x10-20 5.573x10-22 0.06 

 



Table S1: The average deformed volume and number of STZs in samples tested with different 

indenters. 

 

S3. Shear band trajectories and Hertzian Contact relations 

According to the Hertz theory of contact [3,7], the relationship between load, P, and 

displacement, h, is, 

  

 𝑃 =  
4

3
�̅�𝑟√𝑅𝑖. ℎ

3

2         (S27) 

 

where the reduced modulus, 𝐸𝑟
̅̅ ̅, which accounts for the elastic deformation in both the indenter 

and the specimen, is given by, 

 

 
1

𝐸𝑟̅̅ ̅
=

1−𝜈𝑠
2

𝐸𝑠̅̅ ̅
+

1−𝜈𝑖
2

𝐸�̅�
         (S28) 

 

where Ri is the indenter radius, �̅�  and  are the elastic modulus and Poisson’s ratio. The 

subscripts ‘s’ and ‘i’ refer to the sample and the indenter, respectively. For the diamond tipped 

indenter, 𝐸�̅� = 1141 GPa and i = 0.07.  

 The Hertzian contact relations describing the stress field underneath the spherical 

indenter are listed below (these are taken from Ref. [8]). In the present study, all stress and 

spatial variables (like r, z etc.) associated with an apostrophe (′) have been normalized with 

mean contact pressure (Pm) and mean contact radius (a), respectively. 

 

 𝑎 =  (0.75𝑃𝑅𝑖/𝐸𝑟
̅̅ ̅)1/3          (S29) 

 𝑃𝑚 = 𝑃/(𝜋𝑎2)         (S30) 

 𝜎′𝑟 =
3

2
{
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3
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)

3 𝑢′

𝑢′2+𝑧′2
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𝑧′

√𝑢′
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(1−𝜈)
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+ (1 + 𝜈)√𝑢′ tan−1 (

1

√𝑢′
) − 2]}  

            (S31) 

 𝜎′𝜃 = −
3

2
{

1−2𝜈

3𝑟′2
[1 − (

𝑧′

√𝑢′
)

3

] +
𝑧′

√𝑢′
[2𝜈 + 𝑢′

(1−𝜈)

1+𝑢′
− (1 + 𝜈)√𝑢′ tan−1 (

1

√𝑢′
)]}  (S32) 

 𝜎′𝑧 = −
3

2

𝑧′3

√𝑢′(𝑢′2+𝑧′2)
         (S33) 



 𝜏 ′
𝑟𝑧 = −

3

2

𝑟′𝑧′
2

√𝑢′

(𝑢′2+𝑧 ′2)(1+𝑢′)
,        (S34) 

where u’ is the normalized displacement, defined as 

 𝑢′ = 0.5 [𝑟 ′2 + 𝑧 ′2 − 1 + √(𝑟 ′2 + 𝑧 ′2 − 1)
2

+ 4𝑧 ′2].    (S35) 

 Maximum shear stress, 𝜏 ′ = √(
𝜎′

𝑟−𝜎′
𝑧

2
)

2

+ 𝜏 ′
𝑟𝑧

2
     (S36) 

 Maximum of maximum shear stress field = 𝜏𝑚𝑎𝑥 =0.31 (
3

2
𝑃𝑚) = 0.31 (

6�̅�𝑟
2

𝜋3𝑅𝑖
2 𝑃) (S37) 

 Hydrostatic stress, 𝜎′
𝑚 =

𝜎′
𝑟+𝜎′

𝜃+𝜎′
𝑧

3
       (S38) 

 

Using eqs. (S31-S35) and (S36), four discrete contours of max, A, B, C, D are plotted and 

displayed in Fig. S43. These contours, labeled A, B, C and D, represent 2-dimensional 

projections of shear planes where plasticity could potentially initiate, as long as the Mohr-

Coulomb yield criterion, which was found to capture the pressure sensitivity of plastic flow in 

MGs, [9,10], is satisfied.  

 

 

Fig. S4. Contours of max in a material calculated from the Hertzian contact relations for a sphere 

 
3 Although there are different alternatives of shear band trajectories proposed in the literature, 

they vary only marginally from the one shown here and do not affect the outcome of our 

discussion 



in elastic contact with a flat surface.  
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