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A B S T R A C T

The effect of pre-strain on the resistance to gaseous hydrogen embrittlement of CoCrFeMnNi high-entropy alloy
(HEA) was investigated through mechanical testing and thermal desorption analysis. The results reveal that prior
plastic deformation does not affect either the hydrogen contents or the excellent hydrogen embrittlement re-
sistance of the HEA.

1. Introduction

High-entropy alloys (HEAs), which by definition comprise of at least
five metallic constituent elements in (nearly-)equal amounts (in at%),
have been attracting considerable attention in the recent past. This is
because of their exceptional mechanical properties such as high specific
strength combined with good ductility and excellent mechanical per-
formance over a wide range of temperatures [1–5]. For future structural
applications of HEAs, the influence of hydrogen (H) on their mechan-
ical behavior is one of the crucial and essential topics of research since
many potential applications of HEAs may lead to H exposure [6–8] and
thus there is the possibility of hydrogen embrittlement, which could
manifest as severe loss in ductility, unpredictable cracking that leads to
premature fracture, and stress corrosion cracking [9–12]. Hence a close
examination is warranted, but HEAs' resistance to hydrogen embrit-
tlement was not examined in detail. As an early step of the research,
very recently we explored the effect of H on the mechanical behavior of
CoCrFeMnNi HEA (which is one of the most widely investigated HEAs
to date [13–18]), by subjecting it to either electrochemical or gaseous
charging [6,7]. The experimental results show that its resistance to
gaseous hydrogen embrittlement is considerably more than face-cen-
tered cubic (fcc) austenitic stainless steels. This is in spite of HEA's
strong ability to absorb H. We showed that higher hydrogen embrit-
tlement resistance is due to the H content upon charging being below

the threshold value for triggering the mechanism of H-enhanced loca-
lized plasticity (HELP) [7,9]. An important issue, which remains un-
addressed, is the influence of H on the mechanical performance of de-
formed HEA, which is crucial for two reasons. First, any pre-straining
can possibly change the microstructure and, in turn, affect the hydrogen
embrittlement resistance. Second, most of structural metals experience
some level of straining during the final step of manufacturing before
being deployed. Here, it is worth noting that published data shows that
such pre-strain accelerates the hydrogen embrittlement in austenitic
stainless steels [19–21]. Keeping this in view, we examine the effects of
pre-strain on the gaseous hydrogen embrittlement resistance of the
CoCrFeMnNi HEA.

2. Experimental

The HEA samples were prepared by vacuum induction casting of
nominal mixtures of the corresponding metals, each with a purity>
99wt%. The cast ingot was hot-rolled and then solution annealed at
1100 °C for 1 h to reach an equilibrium state of single phase fcc mi-
crostructure. Four different levels of pre-strain (10%, 20%, 30%, and
40% true strain) were introduced by recourse to interrupted tensile
tests on dog-bone-shaped plate-type samples with gauge length and
width of 25 and 5mm, respectively (following ASTM E8). Tests were
performed under displacement rate control (1.5 mm/min) [4]. The
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tensile elongation (failure strain) of the uncharged sample was ~43%
(as shown in Fig. 1) and uniform deformation was observed almost until
the failure without necking. Note that such tensile tests with large-sized
samples were only to prepare pre-strained samples but not directly for
studying H effects.

Microstructure characterizations of the gauge parts of the inter-
rupted samples were conducted by using X-ray diffraction (XRD; D/
MAX-2500, Rigaku-Denki, Japan), electron backscattered diffraction
(EBSD; CrystAlign system with the e-FlashHR detector, Bruker,
Germany) mounted on a field emission scanning electron microscope
(FE-SEM; S-4300SE, Hitachi, Japan), and transmission electron micro-
scopy (TEM; Talos F200X, FEI Co., Hillsboro, OR, USA).

From the gauge parts of the interrupted specimens, sub-sized flat
tensile specimens (with gauge length and width of 10 and 1mm, re-
spectively [7]) as well as small rectangular pieces were extracted, and
were ground with colloidal silica (0.05 µm) to a mirror finish, resulting
in a uniform thickness of ~300 µm. Gaseous H charging was performed
on both sets of specimens in a custom-made Sieverts apparatus at 300 °C
under a constant pressure of 15MPa, which is the maximum capacity of
the apparatus, for 72 h. This charging condition is known to be effective
in evaluating the hydrogen-induced change in mechanical behavior of
austenitic stainless steels [22,23] (that have the same fcc structure and
similar main elements as CoCrFeMnNi HEA [3,7]). To minimize the
influence of outgassing, all the charged samples were immediately
immersion stored in liquid nitrogen until subsequent experiments,
which were completed, in any case, within ~24 h after charging. Sub-
sized tensile tests were carried out on both uncharged and charged
samples using a micro-tensile tester (MTest 300, Gatan Inc., Pleasanton,
CA, USA) at a cross-head speed of 0.1mm/mm (which corresponds to
an initial strain rate of ~1.7 × 10−4 s−1). Nanoindentation experi-
ments were conducted on the rectangular samples using Nanoindenter-
XP (formerly MTS; now Keysight Technologies, Santa Rosa, CA, USA)
equipped with a Berkovich indenter. All the indentation tests were
performed to a peak load, Pmax, of 100mN with constant indentation
strain rate, ε ̇ = (dh/dt)/h= 0.025 s−1 where h is indentation depth and
t is time. For the quantitative analysis of the H content in the charged
rectangular samples, thermal desorption spectroscopy (TDS) was per-
formed with a quadrupole mass spectroscope (EX0014, R-DEC Com-
pany, Tsukuba, Japan) at a constant heating rate of 5 °C/min to the
maximum temperature of ~800 °C.

3. Results and discussion

The true stress vs. true strain response of the HEA, superposed with
those obtained from the interrupted tensile tests, is displayed in Fig. 1.
After yielding at a stress, σy, of ~220MPa, the HEA exhibits

considerable work hardening before failing at a stress of ~820MPa and
43% strain.

The microstructural characterization of the pre-strained specimens
was performed with XRD, EBSD, and TEM. In all the XRD scans (Fig. 2),
identical peak positions, all of which correspond to a single fcc phase,
confirm the absence of stress induced phase transformation [8,15,24].
The lattice parameters estimated (~3.591–3.594 Å) are well within the
reported range (3.59‒3.61 Å [25–27]) for this HEA. Microstructural
analysis performed with EBSD and TEM, Fig. 3a and b, shows only a few
annealing twins and low dislocation density in the unstrained sample.
Upon straining to 20%, grain distortion and a significant increase in
dislocation density within the grains [28] were noted. Further straining
to 40% leads to elongation of the grains along the tensile direction; the
grains are almost filled with highly tangled dislocations, which is in
agreement with the prior reports on HEAs [29,30].

Results of the micro-tensile tests performed on the 0–40% pre-
strained HEA samples before and after gaseous H charging are dis-
played in Fig. 4, from which the following two observations can be
made. (a) H charging does not affect the strain hardening behavior and
the ductility of the HEA in any significant manner. (b) In 0% and 20%
strained samples, H charging does not seem to affect σy whereas it
slightly increases in samples strained to 30% and above. Laplanche
et al. [30] estimated the threshold stress for the initiation of mechanical
twinning in the same HEA as ~720±30MPa. Fig. 4 indicates that σy in
samples strained to 30% and beyond is either similar or higher to this
value. Since H is known to reduce the stacking fault energy, which, in
turn, promotes twinning [31,32], the H-induced slight strengthening
observed in highly pre-strained HEA samples is possibly due to pro-
nounced development of mechanical twinning [8].

Variations in the hardness, estimated by using the Oliver-Pharr
method [33] on the nanoindentation data, with pre-strain are plotted in
Fig. 5 for both before- and after-charging conditions. From it, we noted
that H charging does not alter the hardness in any substantial manner at
all pre-strain levels. The absence of a significant hardness increase in
30% and 40% pre-strained samples (unlike the results of tensile tests,
especially for 40% pre-strained samples) may be explained by the dif-
ferences in stress condition and deformation size between na-
noindentation and micro-tensile tests; i.e., the stress condition under-
neath an indenter is much more complex than that in a uniaxial tensile
sample, and the deforming volume during the nanoindentation is much
smaller than that in the tensile tests of micro-sized (but still bulky)
samples. Combined with the possibility that twinning may prefer some
grains (having specific orientations) and deformation mode, these dif-
ferences may suppress the increase in local hardness.

In an earlier study [7], we observed that gaseous charging of H does
not embrittle CoCrFeMnNi HEA and thus rationalized it on the basis
that the local H content being below a certain threshold level required

Fig. 1. The representative true stress-true strain curves obtained from the normal and
interrupted tensile tests of CoCrFeMnNi HEA sample. Fig. 2. The representative results from XRD.
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for triggering HELP. The results of the present study, in particular the
invariance of ductility in pre-strained and H charged samples, further
establish the excellent resistance of the HEA under investigation to
gaseous H embrittlement. In addition, they imply that pre-straining
does not significantly alter the threshold H levels for triggering the
HELP mechanism.

The H content in the pre-strained samples after charging were
measured by analyzing TDS curves, and the results are displayed in
Fig. 6. The H content of the annealed sample is ~63.2 wppm that is at a
similar level to that reported in previous study, ~76.5 wppm [7],
confirming the reason for the hydrogen embrittlement resistance being
insufficient H content as discussed above. Two features of Fig. 6 are
noteworthy. Pre-straining does not appear to alter the temperature of
the peak desorption. This observation implies that the main H trapping

sites remain unaltered by the pre-straining. More importantly, the H
content, which is given by the area under the desorption curve, is not
significantly affected by pre-straining. This indicates that the largely
increased dislocation density in the pre-strained samples did not en-
hance the capacity of the HEA to absorb H, which is what one would
expect as dislocations are known to be effective H trapping sites
[34–36]; an increase in dislocation density with plastic strain should
have lead to larger amounts of trapped H. On the contrary, the H
content in deformed samples is lower (by ~8.5–10.5 wppm) than that
in the undeformed sample; possible reasons for this are discussed in the
next paragraph. We can conclude that the lower H in the deformed HEA
is the reason for the sustained good hydrogen embrittlement in them.

Results presented in Fig. 6 suggest that dislocations in the HEAs do
not favor H atom trapping, unlike in conventional alloys. A plausible

Fig. 3. Microstructural evolution in the pre-strained samples; the representative results from (a) EBSD, and (c) TEM.

Fig. 4. Typical engineering stress-engineering strain curves from micro-tensile tests. Fig. 5. Variation in nanoindentation hardness with pre-strain.
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reason for this may be the significant lattice strain energy [1,37] of
HEAs, which is also one of the reasons for the high H solubility in
CoCrFeMnNi HEA lattice [7]. Since the TDS peak temperatures, and
thus the main H trapping sites, are not significantly affected by pre-
straining (see Fig. 6), we can conclude it is the lattice rather than dis-
locations that continues to trap H. In this sense, "cleaner" micro-
structure of the annealed HEA sample than the pre-strained samples
may explain a slightly higher H content in the former than in the latter;
that is, probably less H atoms are expected to be trapped in dislocations
than in HEA lattice. Recently, Zhao and Nieh [38] suggested that the
CoCrFeMnNi HEA has a smaller dislocation core than pure Ni, which, in
turn, may not favor preferential H segregation to dislocation cores [39].
Another possible contributing factor is the nanoscale heterogeneity
such as co-clusters and/or short-range orders (SROs) that may exist in
the lattice of CoCrFeMnNi HEA [40–42]. This is partially supported by
the planar dislocation slip characteristics in CoCrFeMnNi HEA [29,30]
since SRO typically suppresses cross-slip. Such nanoscale hetero-
geneities may favor H trapping and thus, at least partially, explain the
high H solubility of annealed HEA. Plastic deformation leads to
shearing of those co-clusters and SROs, and a reduction in their popu-
lation [42] could lead to a reduced H solubility.

4. Conclusion

To summarize, the effect of prior-plastic deformation on the gaseous
hydrogen embrittlement of CoCrFeMnNi HEA was investigated, results
of which show that the excellent resistance of the HEA to hydrogen
embrittlement is unaffected by pre-strains. This is because pre-straining
does not enhance the H solubility in the HEA. On the contrary, it de-
creases the H solubility slightly due to the smaller dislocation core and
the existence of nanoscale heterogeneity in the HEA that make the
lattice more suitable for H atoms’ occupation than dislocations.
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