Supplementary material

Figure S1. Representative bright field TEM images of ZnO nanorods (a) before and (b) after creep tests. Insets are diffraction pattern of nanorods indicating [1 1 -2 0] zone.

Table S1. Mechanical properties of ZnO nanowire (NW), nanobelts (NB), nanorods (NR), nanopillar (NP), nanotube (NT), forest(F) examined with various nanomechanical testing methods (*d*: diameter, *t*: thickness, *w*: width, *E*: elastic modulus, E_r : reduced modulus, *H*: hardness, σ_f : fracture strength, ε_f : fracture strain, σ_y : yield strength, σ_b : buckling strength).

Method	Shape	Size [nm]	E or E _r [GPa]	<i>H</i> [GPa] or σ [GPa] or ϵ	Marks	Ref
	NW	(<i>d</i>) 20-50	-	(<i>H</i>) 3.4	Double contact model	[S1]
	NW	(<i>d</i>) 50-300	$(E_{\rm r})$ 58.7	(<i>H</i>) 3.3	Observation of creep	[S2]
Indentation	NW, NB	(<i>d</i>) 25.5-134.4, (<i>t</i>) 250, (<i>w</i>) 450	(<i>E</i>) 104-198	-	d↓⇒E↑	[S 3]
	NB	(w) ~100 (t) ~10-100	(<i>E</i> _r) 20-50	(<i>H</i>) 2-8	Indentation size effect	[S 4]
	NB	(w) 270-700 (t) 50-140	(<i>E</i>) 31.1	-	Observation of creep	[S 5]
	NR	(<i>d</i>) 300-1000	(<i>E</i>) 63, 116	(<i>H</i>) 9.72, 7.79	(0 0 0 1), (0 1 -1 0) plane	[S6]
	MW	(<i>d</i>) 5000-10000	(<i>E</i>) 31.68	(<i>H</i>) 5.82	Observation of creep	[S7]
Destruction	NW	(<i>d</i>) 45	(<i>E</i>) 29	-		[S8]
	NW	(<i>d</i>) 60-310	-	$(\varepsilon_{\rm f}) \ 0.077$	Brittle fracture, no size effect in $\varepsilon_{\rm f}$	[S 9]
	NW	(<i>d</i>) 85-542	-	$(\varepsilon_{\rm f}) \ 0.04-0.07$	Brittle fracture	[S10]
	NW	(<i>d</i>) 18-304	(<i>E</i>) 133	$(\sigma_{\rm f})$ 3.9-7.0	$d\downarrow \Rightarrow \sigma_{\rm f}\uparrow$, no size effect in <i>E</i> , brittle fracture	[S 11]
	NW	(<i>d</i>) 70-110	(<i>E</i>) 148	$(\sigma_{\rm f})$ 1.8-4.4 ($\varepsilon_{\rm f}$) 0.002-0.007	Brittle fracture	[S 12]
bending	NW	(<i>d</i>) 520-680	(E) 29.37	-	-	[S13]
test	NW	(<i>d</i>) 40-400	(<i>E</i>) 147.3-249.3	-	<i>d</i> ↓⇒ <i>E</i> ↑, core-shell model, ductile-to-brittle transition, amorphization	[S 14]
	NB	(<i>w</i>) 90-125 (<i>t</i>) 70-115	(<i>E</i>) 105-162	-	-	[S15]
	NB	(<i>w</i>) 120-350 (<i>t</i>) 50-150	(<i>E</i>) 40-88	-	Humidity $\uparrow \Rightarrow E \uparrow$	[S 16]
	NR	(<i>d</i>) 97-113	(<i>E</i>) 29, 34,	-	<11-20>, <10-10> direction	[S17]
	NW	(<i>d</i>) 200-500	(<i>E</i>) 21	$(\varepsilon_{\rm f}) \ 0.05 - 0.15$	$d \downarrow \Rightarrow \varepsilon_{\rm f} \uparrow$, brittle fracture	[S18]
Uniaxial	NW	(<i>d</i>) 20-512	-	$(\sigma_{\rm f}) 3.35-9.53$ $(\varepsilon_{\rm f}) 0.023-0.062$	$d\downarrow \Rightarrow \sigma_{\rm f}\uparrow$, brittle fracture	[S 19]
	NW	(<i>d</i>) 20-80	(<i>E</i>) 130-170	$(\sigma_{\rm f}) 4.10-10.32$ $(\varepsilon_{\rm f}) 0.03-0.06$	Size effect, brittle fracture	[S20]
1031	NW	(<i>d</i>) 18-114	-	$(\varepsilon_{\rm f}) 0.02-0.065$	$d\downarrow \Rightarrow \varepsilon_{\rm f}\uparrow$, brittle fracture	[S21]
	NW	(<i>d</i>) 350-520	(<i>E</i>) 57.15	-	-	[S13]
	NW	(<i>d</i>) 60-310	(<i>E</i>) 97	$(\sigma_{\rm f}) 3.7-5.5$	Brittle fracture	[S9]
	NP	(<i>d</i>) 1000	(<i>E</i>) 123	$(\sigma_{\rm y})$ 3	Pyramidal slip	[S22]
	NW	(<i>d</i>) 20-80	(<i>E</i>) 140-210	$(\sigma_{\rm f}) 4.10-10.32$ $(\varepsilon_{\rm f}) 0.03-0.06$	Core-shell model, brittle fracture	[S20]
	NW.F	(<i>d</i>) 30, 100	-	$(\sigma_{\rm b})$ 806, 723	-	[S23]
Buckling test	NW.F	(<i>d</i>) 300-600	(<i>E</i>) 64.6-345.7	$(\sigma_{\rm b}) \ 0.1-0.55$ $(\varepsilon_{\rm b}) \ 0.0011-0.0016$	$d\!\downarrow \! \Rightarrow \! E \And \sigma_{\mathrm{y}} \! \uparrow$	[S24]
	NR.F, NT.F	(<i>d</i>) 208, (<i>d</i> _{out}) 208, (<i>d</i> _{inner}) 125	-	(σ _b) 0.006765, 0.0025	-	[S 25]
	NW	(<i>d</i>) 17-550	(E) 140-220	-	$d \downarrow \Rightarrow E \uparrow$	[S26]
Resonance test	NW	(<i>d</i>) 30-100	(<i>E</i>) 58, 99		(0 0 0 1), (-1 0 1 0) plane	[S27]
	NW	(<i>w</i>) 28-55, (<i>t</i>) 19-39	(<i>E</i>) 52	-	-	[S28]

Table S2. Diffusivities of Zn and O in ZnO and at 298 K and ratio to surface diffusivity.

Path	T _{exp} [K]	$D_o [m^2/s]$	Q [J/atom]	D [m ² /s]	D _{surf} /D	Ref
Lattice	1273-1523	1.30×10^{-09}	3.02×10^{-19}	1.54×10^{-41}	3.85×10^{13}	[S29]
Lattice	1072 1672	1.00×10^{-05}	6.19 x 10 ⁻¹⁹	4.75×10^{-71}	1.24×10^{43}	[820]
GB	10/3-10/5	1.00×10^{-1}	4.80×10^{-19}	2.27×10^{-52}	2.60×10^{24}	[330]
Lattice	1173-1673	3.00×10^{-4}	4.59×10^{-19}	1.09 x 10 ⁻⁵²	5.45×10^{24}	[S 31]
Lattice	485-994	7.26×10^{-10}	2.88×10^{-19}	2.56×10^{-40}	2.31×10^{12}	[S32]
Lattice	1123-1293	1.73×10^{-2}	6.18×10^{-19}	1.03×10^{-67}	5.75×10^{39}	[S33]
Lattice	1200 1650	1.57×10^{-7}	4.26×10^{-19}	1.56×10^{-52}	3.79×10^{24}	[\$24]
GB	1300-1030	1.59×10^{-3}	3.91 × 10 ⁻¹⁹	8.34×10^{-45}	7.09×10^{16}	[334]
Lattice	700-1200	4.54×10^{-7}	4.55×10^{-19}	4.07×10^{-55}	1.45×10^{27}	[S 35]

Zn diffusion

O diffusion

Path	T _{exp} [K]	$D_o [m^2/s]$	Q [J/atom]	D [m ² /s]	D _{surf} /D	Ref
Lattice	1273-1523	6.50×10^{7}	1.15×10^{-18}	5.11×10^{-114}	1.16×10^{86}	[S29]
Lattice	1423-1673	1.05×10^{-1}	6.57×10^{-19}	4.54×10^{-71}	1.30×10^{43}	[S 36]
Lattice (a-axis)		4.00×10^{-11}	3.56×10^{-19}	1.11×10^{-48}	5.35×10^{20}	[\$37]
Lattice (c-axis)	1123 1473	9.00×10^{-10}	4.04×10^{-19}	2.09×10^{-52}	2.83×10^{24}	
Lattice (a-axis)	1125-1475	1.52×10	6.54×10^{-19}	1.43×10^{-68}	4.13×10^{40}	
Lattice (c-axis)		5.50×10^{-05}	6.07×10^{-19}	4.18×10^{-69}	1.42×10^{41}	
Lattice (a-axis)		1.50×10	8.15×10^{-19}	1.22×10^{-85}	4.86×10^{57}	
Lattice (c-axis)	1203-1323	1.20×10^4	9.48×10^{-19}	9.14 × 10 ⁻⁹⁷	6.47×10^{68}	[S38]
GB		5.00×10^{-7}	4.95×10^{-19}	2.81×10^{-59}	2.11×10^{31}	
Lattice	1172 1072	4.15×10^{-8}	3.71×10^{-19}	2.67×10^{-47}	2.22×10^{19}	[820]
GB	11/5-12/5	5.51×10^{-2}	4.43×10^{-19}	9.28×10^{-49}	6.38×10^{20}	[833]
Near interface	1002 1202	6.70×10^{-5}	5.74×10^{-19}	1.44×10^{-65}	4.10×10^{37}	[840]
Near surface	1093-1393	3.20×10^{-3}	6.59 × 10 ⁻¹⁹	7.87×10^{-73}	7.52×10^{44}	[540]
Lattice	1072 1072	1.30 x 10 ⁻¹¹	3.60×10^{-19}	1.16×10^{-49}	5.09×10^{21}	[0.41]
GB	10/3-12/3	5.90 x 10 ⁻⁶	3.54×10^{-19}	2.65×10^{-43}	2.23×10^{15}	[541]

References (Supporting Information)

- S1. Feng, G.; Nix, W. D.; Yoon, Y.; Lee, C. J. J. Appl. Phys., 2006, 99, 074304.
- S2. Chen, Y. Q.; Zheng, X. J.; Mao, S. X.; Li, W. J. Appl. Phys., 2010, 107, 094302.
- S3. Stan, G.; Ciobanu, C. V.; Parthangal, P. M.; Cook, R. F. Nano. Lett., 2007, 7, 3691-3697.
- S4. Zhao, M.; Jiang, C.; Li, S.; Mao, S. X. Mater. Sic. Eng. A, 2005, 409, 223-226.
- S5. Ni, H.; Li, X. Nanotechnology, 2006, 17, 3591-3597.
- S6. Yan, X.; Dickinson, M.; Schirer, J. P.; Zou, C.; Gao, W. J. Appl. Phys., 2010, 108, 056101.
- S7. Liu, Z.; Yan, X.; Lin, Z.; Huang, Y.; Liu, H.; Zhang, Y. Mater. Res. Bull., 2012, 47, 750-754.
- S8. Song, J.; Wang, X.; Riedo, E.; Wang, Z. L. Nano. Lett., 2005, 5, 1954-1958.
- S9. Hoffmann, S.; Ostlund, F.; Michler, J.; Fan, H. J.; Zacharias, M.; Christiansen, S. H.; Ballif, C. Nanotechnology, 2007, 18, 205503.
- S10. Chen, C. Q.; Zhu, J. Appl. Phys. Lett., 2007, 90, 043105.
- S11. Wen, B.; Sader, J. E.; Boland, J. J. Phys. Rev. Lett., 2008, 101, 175502.
- S12. Jing, G.; Zhang, X.; Yu, D. Appl. Phys. A Mater., 2010, 100, 473-478.
- S13. Jang H.-S.; Jeon S. K.; Kwon O.-H.; Nahm S. H.; *J. Nanosci. Nanotech.*, **2011**, 11, 721-724
- S14. Asthana, A.; Momeni, K.; Prasad, A.; Yap, Y. K.; Yassar, R. S. Nanotechnology, 2011, 22, 265712.
- S15. Mai, W.; Wang, Z. L. Appl. Phys. Lett., 2006, 89, 073112.
- S16. Yang, Y.; Wang, G.; Li, X. Nano. Lett., 2011, 11, 2845-2848.
- S17. Erdelyi, R.; Halasz, V.; Szabo, Z.; Lukacs, I. E.; Volk, J. Physica E, 2012, 44, 1050-1053.
- S18. Desai A. V.; Haque M. A.; Sens. Actuat. A, 2007, 134, 169-176
- S19. Agrawal R.; Peng B.; Espinosa H. D.; Nano Lett., 2009, 9, 4177-4183
- S20. Xu F.; Qin Q.; Mishra A.; Gu Y.; Zhu Y.; Nano Res., 2010, 3, 271-280
- S21. He M.-R.; Xiao P.; Zhao J.; Dai S.; Ke F.; Zhu J.; J. Appl. Phys., 2011, 109, 123504
- S22. Sung T. H.; Huang J. C.; Hsu J. H.; Jian S. R.; Nieh T. G.; *Appl. Phys. Lett.*, **2012**, 100, 211903
- S23. Young S. J.; Ji L. W.; Chang S. J.; Fang T. H.; Hsueh T. J.; Meen T. H.; Chen I. C.; Nanotech., 2007, 18, 225603
- S24. Fang T.-H.; Kang S.-H.; J. Phys. D: Appl. Phys., 2008, 41, 245303
- S25. Riaz M.; Fulati A.; Amin G.; Alvi N. H.; Nur O.; Willander M.; *J. Appl. Phys*, **2009**, 106, 034039
- S26. Chen C. Q.; Shi Y.; Zhang Y. S.; Zhu J.; Yan Y. J.; Phys. Rev. Lett., 2006, 96, 075505
- S27. Huang Y.; Zhang Y.; Wang X.; Bai X.; Gu Y.; Yan X.; Liao Q., Qi J.; Liu J.; *Crystal Growth Design*; **2009**, 9, 1640-1642
- S28. Bai X. D.; Gao P. X.; Wang Z. L.; Wang E. G.; Appl. Phys. Lett., 2003, 82, 4806-4808
- S29. Moore, W. J.; Williams, E. L. Discuss. Faraday Soc., 1959, 28, 86-93
- S30. Roberts, J. P.; Wheeler, C. Trans. Faraday. Soc., 1960, 56, 570-580
- S31. Gupta, T.K.; Coble, R.L. J. Am. Ceram. Soc., 1965, 51, 521-525.
- S32. Wuensch, B. J.; Tuller, H. L. J. Phys. Chem. Solids, 1994, 55, 975-984
- S33. Tomlins, G. W.; Routbort, J. L; Mason, T. O. J. Appl. Phys., 2000, 87, 117-123
- S34. Nougueira, M. A. D. N; Ferraz, W. B.; Sabioni, A. C. S. Mater. Res. 2003, 6, 167-171.
- S35. Lakshmi, P. V. B.; Ramachandran, K. Bull. Mater. Sci., 2011, 34, 371-375.
- S36. Hoffman, J. W.; Lauder, I. Trans. Faraday. Soc., 1970, 66, 2346-2353.

- S37. Tomlins, G. W.; Routbort, J. L; Mason, T. O. J. Am. Ceram. Soc., 1998, 81, 869-876
- S38. Haneda, H.; Sakaguchi, I.; Watanabe, A.; Ishigaka, T.; Tanaka, J. J. Electroceram., **1999**, 4, 41-48.
- S39. Sabioni, A. C. S.; Ramos, M. J. F.; Ferraz, W. B. Mater. Res., 2003, 6, 173-178.
- S40. Matsumoto, K; Adachi, Y.; Ohgaki, T.; Sakaguchi, I.; Ohashi, N.; Haneda, H. J. Ceram. Soc. Jpn., **2009**, 117, 666-670.
- S41. Sakaguchi, I.; Matsumoto, K; Ohgaki, T.; Adachi, Y.; Watanabe, A.; Ohashi, N.; Haneda, H. J. Ceram. Soc. Jpn., **2010**, 118, 362-365.