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espite many efforts to advance the understanding of nanowire mechanics, 
 precise characterization of the mechanical behavior and properties of 
anowires is still far from standardization. The primary objective of this work 

s to suggest the most appropriate testing method for accurately determining 
he mechanical performance of silicon nanowires. To accomplish this goal, 
he mechanical properties of silicon nanowires with a radius between 15 and 
0 nm (this may be the widest range ever reported in this research fi eld) are 
ystematically explored by performing the two most popular nanomechanical 
ests, atomic force microscopy (AFM) bending and nanoindentation, on 
he basis of different analytical models and testing conditions. A variety of 
anomechanical experiments lead to the suggestion that AFM bending based 
n the line tension model is the most appropriate and reliable testing method 
or mechanical characterization of silicon nanowires. This recommendation is 
lso guided by systematic investigations of the testing environments through 
 nite element simulations. Results are then discussed in terms of the size-
ependency of the mechanical properties; in the examined range of nanowire 
adius, the elastic modulus is about 185 GPa without showing signifi cant size 
ependency, whereas the nanowire strength dramatically increases from 2 to 
0 GPa as the radius is reduced. 
  1. Introduction 

 One-dimensional (1D) nanomaterials including nanowires, 
nanorods, and nanotubes have attracted considerable interest 
from the interdisciplinary areas in science and engineering 
because of their unique and excellent mechanical, electrical, 
and optical properties. In particular, silicon (Si) nanowires have 
been considered to be one of the most technologically impor-
tant building blocks for emerging bottom-up nanotechnology 
and have been used as the active components in a broad range 
of electronic devices such as fi eld effect transistors, [  1  ,  2  ]  chemical 
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and biological sensors, [  3  ]  photodetectors, [  4  ]  
and solar cells. [  5  ]  Since a fundamental 
knowledge of nanowire mechanics is 
essential for designing, manufacturing, 
and reliably operating nanowire-based 
nanodevices, the precise measurement 
of the mechanical behavior and proper-
ties in nanowires has been gathering not 
only scientifi c but also practical interest. 
In particular, as signifi cant progress has 
been made toward fl exible and stretchable 
nanowire electronics, the understanding 
and control of mechanical behavior at the 
nanoscale have become more important. 

 A variety of experimental approaches 
have been developed including a lateral 
or normal bending test using atomic force 
microscopy (AFM), [  6–10  ]  an instrumented 
nanoindentation test, [  11–14  ]  a resonant fre-
quency (or electric-fi eld-induced oscilla-
tion) test, [  15  ,  16  ]  a buckling test (especially 
for so-called nanoforests), [  17  ]  and in situ 
bending and tensile testing. [  18  ,  19  ]  Among 
these, AFM-based bending [  6–8  ]  and nanoin-
dentation [  11–13  ]  are the most popularly 
adopted testing methods for measuring 

astic properties [  20  ]  due to their advantages 
both elastic and pl
of easy preparation, convenient manipulation, and high spa-
tial resolution. However, even these two methods are still far 
from standardization and the experimental results have shown 
large discrepancies. For example, although it has often been 
proposed [  6–8  ]  that appropriate analysis of AFM bending data 
can lead to the full spectrum of mechanical properties from 
elastic deformation to failure, an important question, “Which 
analytical model would provide more accurate values?” remains 
unresolved. Several issues also exist for nanoindentation of 
nanowires, e.g., the infl uences of the substrate (in a similar 
manner to that adopted in previous thin fi lm studies), [  21  ]  the 
rounded surface of the nanowires, [  22  ]  and the indenter tip blunt-
ness. [  21  ]  Sometimes the nanoindentation experiments are con-
ducted with AFM [  14  ]  instead of a commercial indentation equip-
ment, but the inherent shortcomings, such as the diffi culty of 
perpendicular contact and the defl ection of the cantilever, make 
it diffi cult to yield precise results. 

 With these in mind, the primary objective of this work 
was set to suggest the most appropriate and reliable testing 
method for precisely determining the mechanical properties of 
Si nanowires. To accomplish this goal, we have estimated the 
279wileyonlinelibrary.com
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  Figure  1 .     Results from AFM bending experiments. a) Representative  F–  d  
curve from an AFM bending test. The inset images are the AFM images 
taken before and after bending test and the  V–  d  curve before conver-
sion to the  F–  d  curve. b) Summary of elastic modulus and yield strength 
extracted from AFM bending.  
elastic modulus and yield (or failure) strength of  < 111 > -ori-
ented Si nanowires grown by vapor-liquid-solid (VLS) method 
via two most popular nanomechanical tests, AFM bending and 
nanoindentation, on the basis of different analytical models and 
testing conditions. The results from different analyses were sys-
tematically investigated and then directly compared to provide 
a fundamental guideline for legitimate mechanical measure-
ment. Furthermore, to our best knowledge, these experimental 
data cover the widest range of nanowire radius (15–70 nm) ever 
reported before in this research fi eld, and thus it is hoped that 
the evaluated nanowire strength for a wider range would be val-
uable for better understanding of nanowire mechanics.   

 2. Results and Discussion  

 2.1. AFM Bending 

  Figure    1 a  shows a representative lateral force–displacement 
( F – d ) curve obtained from AFM bending experiments (for 
details, see Experimental Section). Since the output signal 
of AFM bending was voltage  V  (i.e., photodiode signal) as a 
function of displacement,  d,  as shown in the inset graph of 
Figure  1a , it was converted to the absolute value of lateral force, 
 F , using the following equation: [  23  ] 

 
F =

(
Ecanwt3

6l 2a

) (
1

Sver

)
V

  
(1)

   

   where  E  can ,  w ,  t , and  l  are the elastic modulus, width, thick-
ness, and length of the cantilever, respectively;  a  is the AFM tip 
height; and  S  ver  is the vertical sensitivity, which means the slope 
of  V–  d  curves during forcing on a hard surface. In the fi gure, a 
sharp drop in force corresponds to the brittle failure of the Si 
nanowire, which was confi rmed by examining the AFM image 
taken immediately after the test (inset of Figure  1a ). 

 Since two types of forces, bending and line tension (along 
the axial direction), can evolve during an AFM bending test of 
nanowire, there are three possible analytical models applicable 
to the extraction of elastic modulus and yield strength from 
AFM  F – d  curve: The fi rst is the bending-only model (without 
considering line tension) based on the conventional elastic 
beam-bending theory, where  F–  d  relationship for an elastic 
deformation and yield strength   σ   y  can be given by [  6  ] 

 
F =

48Br 4 E

L 3
· d

  
(2)

   

and

 
Fy =

Fy L

2Br 3  
(3)

   

where  E ,  r , and  L  are the elastic modulus, radius, and span 
length of nanowire, respectively, and  F  y  is the load at the onset 
of failure. The second is the line-tension-only model in which 
an axial tensile force along the nanowire is predominant and 
thus bending force is not considered. The line tension analysis 
gives equations of  F – d  relation and   σ   y  as: [  7  ] 
© 2011 WILEY-VCH Verlag Gwileyonlinelibrary.com
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Fy =

Fy L

4Br 2dy  
(5)
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where  d  y  is the displacement at failure. The last is the combined 
bending-tension model. This model was derived to account for 
both bending and line tension together, and the equations are 
given as in the form of the bending-only model with correction 
function  f (  α  ) and  g (  α  ): [  8  ] 

 
F =

48Br 4 E

L 3
· d · f (")

  
(6)

   

and

 
Fy =

Fy L

2Br 3
· g (").

  
(7)

   

  The function  f (  α  ) and  g (  α  ) are defi ned as

 

f (") =
"

48 − 192·tanh
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)

√
"   
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and
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where   α   is related to nanowire radius and displacement by

 
" =

6g(140 + g)

350 + 3g   
(10)

   

and

 
g =

(
2d

r

)2

.
  

(11)
   

  Collectively, the relation between  F  and  d  is linear for the 
bending-only model and non-linear for the others. As noticed 
in  Equation 3 ,  5 , and  7 , the yield strength based on any model 
could be easily calculated by putting  F  and  d  at the point 
of failure (i.e.,  F  y  and  d  y ) into the equations. [  24  ]  However, to 
extract the elastic modulus, different methods were applied: 
in the bending-only and tension-only approaches, the elastic 
modulus was extracted by properly fi tting the loading curve (in 
Figure  1a ) following the theoretical  F–  d  relation ( Equation 2 , 4 ), 
whereas in the case of the combined bending-tension model, 
the elastic modulus was calculated by putting  F  and  d  at failure 
into  Equation 7  because the correction function in  Equation 6  
was too complex to be used for fi tting the experimental data. It 
should be noted that for a brittle material such as bulk Si under 
external stresses, the end of elastic deformation (i.e., yielding) 
is often more closely related to fracture (controlled by crack-like 
fl aws) than plastic deformation (activated by crystalline defects, 
i.e., dislocations). However, the detailed mechanism of the 
nanoscale yielding has not been fully understood yet. Thus, in 
this study, the strength at the end of elastic deformation is just 
called “yield strength,” which encompasses all feasible mecha-
nisms for fi nishing the elastic deformation. This is acceptable 
because almost no difference between yield strength and failure 
© 2011 WILEY-VCH Verlag GmbAdv. Funct. Mater. 2011, 21, 279–286
strength is generally observed in the uniaxial tests of brittle 
materials exhibiting a small-scale yielding. 

 Figure  1b  summarizes the elastic modulus,  E , and yield 
strength,   σ   y , obtained from each model as a function of 
nanowire radius. In the plot of the logarithm of  E  and   σ   y  
against the radius, the bending-only model yielded an inversely 
linear relation of the properties against the radius for a wide 
range (i.e., 600–40000 GPa for  E  and 35–700 GPa for   σ   y ). For 
the tension-only model, the  E  was 186.1 GPa  ±  47.7 GPa and 
was almost independent of radius over the investigated range, 
while   σ   y  increased from 2 to 10 GPa as the nanowires became 
smaller. In the case of the combined bending-tension model, 
 E  was 141.9 GPa  ±  33.3 GPa with no size dependency and   σ   y  
increased from 12 to 37 GPa with reducing the radius. 

 From these experimental results, one may fi nd a clue as to 
which model is the most appropriate for estimating the proper-
ties of nanowires (or at least the Si nanowires examined here). 
First of all, the results from the bending-only model may not be 
reasonable; the  E  values are much higher than those reported 
in the literature (170–190 GPa [  25  ,  26  ]  as marked in Figure  1b ; 
some indentation results provide higher values [  27–29  ] ) and the 
  σ   y  values are higher than the theoretical yield strength (  σ   th   =  
2  τ   th   ≈   G /5  ≈  12 GPa where  G   ≈  60 GPa, [  30  ,  31  ]  marked in the 
lower panel of Figure  1b ) and even than the theoretical cohe-
sive strength (  σ   th,coh   ≈   E /10  ≈  18 GPa). One may easily imagine 
that this unlikely result came from a linear  F – d  relation in 
 Equation 2 , which cannot explain the non-linear shape of the 
experimental curve. Next, in the case of the combined bending-
tension model, the  E  values are within a reasonable range 
though they are slightly smaller than those in the literature. 
However, the fact that the   σ   y  values are higher than   σ   th  makes 
this model appear to be inappropriate as well. Finally, the ten-
sion-only model seems to provide the most reasonable results 
for both the  E  values, which are very close to the literature 
values, and the   σ   y  values, which become more comparable to 
the theoretical values as nanowire radius is reduced. Therefore, 
we could reach the conclusion that the adoption of the tension-
only model is the most valid here. 

 To support this conclusion, a series of 3D fi nite element 
simulations were conducted (see  Figure    2 a , which shows a rep-
resentative example of elastic strain distribution during AFM 
bending). In the simulations, the nanowire (with the same size 
as that of the tested nanowire) was loaded until it failed. As 
representatively shown in Figure  2b , the  F – d  curve extracted 
from simulations is in good agreement with that of experi-
ment. It is important to note that the  F–d  relation is dependent 
on the ratio of the maximum displacement to the nanowire 
radius ( d  max / r ). The inset images of Figure  2b  show examples 
of the simulation results together with the theoretically fi tted 
values; the dashed line and the solid curve are based on the 
bending-only ( Equation 2 ) and the tension-only model ( Equa-
tion 4 ) respectively. As shown in the fi gure, when  d  max / r  is rela-
tively small (see the example of  d  max / r   =  1),  F  increases almost 
linearly with  d . However, as  d  max / r  increases, the  F – d  relation 
is no longer linear (see the inset for  d  max / r   =  5, where the 
 F – d  curve is between the line from the bending model and the 
curve from the tension model). For very high  d  max / r  (the exper-
imental data in Figure  2b ),  F  could be successfully described 
as a linear function of  d  3 , implying that  Equation 4  of the 
H & Co. KGaA, Weinheim 281wileyonlinelibrary.com
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  Figure  2 .     Representative examples of the results from 3D fi nite element simulations. a) Elastic 
strain distribution during AFM bending ( d  max / r   =  28). b)  F – d  curves from bending experiments 
and fi nite element simulations ( d  max / r   =  28). The inset images are  F – d  curves for the cases of 
 d  max / r   =  1 and  d  max / r   =  5, in which  F – d  simulation data are fi tted with the bending-only model 
(dashed line) and the tension-only model (solid curve).  
tension-only model is applicable. Note that at the displacement 
of failure in Figure  2b  ( d  max   ≈  600 nm), the theoretical bending 
force is negligibly small (less than 1% of theoretical tension 
force). Therefore, one may imagine that as the  d  max / r  ratio 
increases, the proper analytical model would change from the 
bending-only model to the combined bending-tension model 
and then fi nally to the tension-only model (for very high values 
of  d  max / r ). Based on the experimental and simulated results, it 
is possible to propose a way to select an appropriate analytical 
model for AFM bending tests of Si nanowires. The bending-
only model ( Equation 2 , 3 ) can be successfully applied when the 
 d  max / r  is smaller than unity and/or the  F – d  relation is linear. 
For a nonlinear  F – d  relation, the combined bending-tension 
model can be adopted for  d  max / r   ≈  1–20 and the tension-only 
model for  d  max / r   >  20, the range in which all of our AFM 
bending tests lie. It is noteworthy that our suggestion is based 
on Si nanowire bending with a span length of 4  μ m and thus 
the detailed boundary values of  d  max / r  between each model can 
© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhwileyonlinelibrary.com
be varied when different span lengths and 
materials are applied.    

 2.2. Nanoindentation 

 Now, we turn our attention into the nano-
indentation experiments (for details, see 
Experimental Section).  Figure    3 a  shows load–
displacement ( P–  h ) curves obtained from 
nanoindentation with a typical Berkovich 
indenter and a sharper cube-corner indenter 
having centerline-to-face angles of 65.3 °  and 
35.3 ° , respectively. At a given load, the sharper 
cube-corner indenter produced much higher 
displacement than the Berkovich indenter. 
Inset images show a representative example 
of the indentation impression made in the 
center of the nanowire. The elastic modulus, 
 E , and the hardness,  H , were calculated 
according to the commonly used Oliver–
Pharr method. [  32  ]  Tabor’s empirical equa-
tion, [  33  ]    σ   y   =   CH , with a constraint factor  C  of 
about 2.5 [  34  ]  was used to estimate   σ   y  from  H . 
In Figure  3b , the  E  and   σ   y  from nanoindenta-
tion are plotted against the nanowire radius. 
No obvious trend can be found in the changes 
in  E  and   σ   y  with the radius. For Berkovich 
indentation, average values of  E  and   σ   y  were 
37.9 GPa  ±  13.3 GPa and 0.8 GPa  ±  0.4 GPa, 
respectively, which are two or three times 
smaller than the values measured with the 
cube-corner tip ( E   =  59.5 GPa  ±  13.3 GPa 
and   σ   y   =  2.3 GPa  ±  0.9 GPa).  

 One of the possible reasons for the much 
higher hardness of the cube-corner inden-
tation is the effect of the rounded surface 
of the nanowire [  22  ]  on the predicted contact 
area.  Figure    4 a  is a schematic illustration pre-
senting the infl uences of surface roundness 

and tip geometry on the contact radius,  r  c . 

The left-hand side of the fi gure is for the Berkovich indentation, 
while the other side exhibits cube-corner indentation. Since the 
Oliver–Pharr method fundamentally requires a fl at sample sur-
face, a signifi cant error can be made if one applies this method 
to analyze the results of the indentation on a rounded surface; 
that is, as shown in Figure  4a , if one calculates the contact 
area  A  of the rounded sample according to the Oliver–Pharr 
method (in which the surface is assumed to be fl at), the calcu-
lated  A  will be overestimated and thus the indentation hardness 
 H  ( =   P / A ) and the elastic modulus  E  (which is proportional 
to  A   − 0.5 ) can be overestimated. From the fi gure, it is also pos-
sible to expect that the use of a sharper indenter may reduce 
the difference between the calculated and real contact area. To 
further support this hypothesis, 2D fi nite element analysis of 
Si was performed for both a rounded surface nanowire and 
a fl at surface fi lm. To simplify the simulations, the substrate 
and the conical indenters (having half-included angles of 70.3 °  
and 42.3 ° , which are equivalent to a Berkovich and cube-corner 
eim Adv. Funct. Mater. 2011, 21, 279–286
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      Figure  3 .     Results from nanoindentation experiments. a) Representative 
 P – h  curves from nanoindentation with Berkovich and cube-corner tips. 
The inset images are the representative AFM images taken before and 
after the experiment. b) Summary of elastic modulus and yield strength 
obtained from nanoindentation with the two tips.  

      Figure  4 .     The rounded surface effect on the contact area. a) Schematic 
illustrations for comparison between Berkovich (left-hand side) and cube-
corner indentation (right-hand side) on both rounded and fl at surface. 
b) Contact radius estimated by fi nite element simulations.  
indenter, respectively) were assumed to be rigid, and the max-
imum indentation depth was fi xed as 30% of their diameter or 
thickness. The results are shown in Figure  4b  where the values 
of the contact radius  r  c  are plotted against indentation depth  h . 
It is seen in the fi gure that, regardless of the tip geometry, the 
© 2011 WILEY-VCH Verlag GmAdv. Funct. Mater. 2011, 21, 279–286
 r  c  for fl at surface is larger than that for the rounded surface. 
Additionally, the cube-corner indentation produces a much 
smaller difference in the  r  c  value between the fl at and rounded 
surface than the Berkovich indentation. However, even in 
the cube-corner indentation, the  r  c  for a fl at surface at  h  max   =  
30 nm is still 1.3 times larger than that for rounded surface so 
that the underestimation of modulus and hardness is inevi-
table. Besides the overestimation of the contact area, another 
possible reason for the underestimated hardness and modulus 
is the sample boundary effect in a way similar to that suggested 
by Lian et al. [  35  ]  for the indentations on the nano- and micropil-
lars; the deformation in a sample with fi nite boundaries is less 
constrained by surrounding materials (unlike in a semi-infi nite 
half plane) and, thus, may result in a decrease in both stiffness 
and hardness. Collectively, it seems diffi cult to realize the pre-
cise mechanical characterization of nanowire by nanoindenta-
tion based on the Oliver–Pharr method.    

 2.3. Comparison and Size Effect 

 The main question we posed earlier (“Which technique is 
the most appropriate and reliable for the precise mechanical 
bH & Co. KGaA, Weinheim 283wileyonlinelibrary.com
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      Figure  5 .     Variation in the elastic modulus and yield strength of Si 
nanowires (obtained in present and previous studies [  10  ,  18  ,  19  ,  36  ] ) as a func-
tion of nanowire radius.  
property measurement of Si nanowire?”) may be addressed by 
simply comparing the values from AFM bending (the tension-
only model data in Figure  1b ) and those from nanoindenta-
tion (the cube-corner indentation data in Figure  3b ); that is, 
AFM bending with the tension-only analysis may be better 
than nanoindentation. Although the cube-corner tip produced 
more reasonable values than the Berkovich tip, it is still not free 
from the rounded-surface effect and sample boundary effect. 
In  Figure    5  , the elastic modulus and yield strength from AFM 
bending based on the tension-only model are replotted with the 
values reported in the previous studies. [  10  ,  18  ,  19  ,  36  ]  There is a good 
agreement between present and previous data. Note that only 
the data showing a good fi t of the  F – d  3  relation in  Equation 4  
(correction factor  R  2   >  0.75) are presented in the fi gure.  

 In Figure  5 , as the nanowire radius was reduced from 70 to 
15 nm, the elastic modulus was not signifi cantly changed and 
remained almost constant at about 185 GPa, whereas the yield 
strength increased from 2 to 10 GPa. There have been many 
studies devoted to analyzing the size dependency of the elastic 
modulus and yield strength of nanowires. First, the effect of 
nanowire size on the elastic modulus is somewhat controversial 
and strongly dependent on the nanowire material; for example, 
Stan et al. [  14  ]  and Jing et al. [  9  ]  reported that the  E  of ZnO and 
metallic (silver) nanowires increased with decreasing radius 
(which has been often explained by energy pinning theory 
based on Goldschmidt–Pauling’s rule of bond contraction), [  37  ,  38  ]  
© 2011 WILEY-VCH Verlag Gmwileyonlinelibrary.com
hile Zhu et al. [  19  ]  observed an opposite trend, i.e., elastic sof-
ening, for Si nanowires (see Figure  5 ), that is,  E  decreased 
ith reduced radius. The most likely mechanisms for the size-
ependent elastic modulus of Si nanowires are the surface 
econstruction [  39  ]  and the existence of surface oxide/amorphous 
ayer. [  10  ]  Surface reconstruction can be caused by broken bonds 
n surface atoms in order to lower the surface energy. Since Si 
anowires are often covered with an amorphous silicon oxide 

ayer in which atoms are randomly distributed and the sur-
ace energy is minimized, this reconstruction effect is thought 
o be a minor factor in the softening effect. Also, considering 
hat the  E  of amorphous silicon oxide was reported to be about 
5 GPa [  40  ]  and is much smaller than that of silicon, the elastic 
oftening with reduced size can be caused by the surface oxide 
ayer despite its thickness of less than 5 nm. However, in our 
xperiments, the trend of elastic softening with reduced radius 
s not manifested (see Figure  5 ). This disagreement between 
resent and previous work [  19  ]  may arise from the difference in 
he examined range of the nanowire radius; the previous simu-
ation [  41  ,  42  ]  and experimental work [  19  ]  reported that the elastic 
oftening of Si nanowires is obvious when the radius is smaller 
han 15 nm, but the radius range investigated here is 15–70 nm, 
here the modulus is supposed to be constant. 
 In contrast to the elastic modulus, the genearlly accepted 

the smaller, the stronger” rule is clearly observed in the plot 
f the yield strength versus nanowire radius in Figure  5 . For 
 111 > -oriented Si nanowires, such trend agrees with the pre-
ious results, [  10  ,  19  ]  as seen in the fi gure. The different trends 
f size effect for elastic modulus and yield strength may con-
eivably come from the fact that the latter is much more seri-
usly affected by the defects in nanowires. As mentioned ear-
ier, the end of elastic deformation (i.e., yielding) in Si is often 

ore closely related with fracture than deformation and the 
racture may occur, even on the nanoscale, by the sudden and 
atastrophic growth of cracks that initiate at the fl aws or crystal-
ine defects. Since Si nanowires grown by VLS-method are well 
nown to have an almost fl aw-free internal structure, cracking 
an be assumed to initiate at the surface fl aws. For nanowires 
ith smaller size, there is less possibility of surface fl aws, 

eading to an increase in the yield strength. In particular, there 
eems to be a transition in size-dependency around 30 nm, 
here the decreasing rate of the nanowire strength becomes 
bruptly changed. While this might conceivably be associated 
ith a drastic change in surface fl aw density, [  19  ]  further studies 

o clarify possible mechanisms are desirable. 
 On the other hand, we showed in the previous section that 

he cube-corner indentation is more accurate than the Berkovich 
ndentation. Since the indentation depth was set to be 30% of 
anowire diameter, relative comparison of the plasticity onset 

or different sizes of nanowires was acceptable in a qualitative 
anner, although we could not extract the absolute values of 

he strength even with a cube-corner indenter. As shown in 
igure  3 , the yield strength measured with the cube-corner 

ndenter increases with decreasing radius, which also confi rms 
he size-dependency in yield strength. 

 Before closing, it is constructive to note again that, if we 
ocus on the size below 100 nm, to our best knowledge, our 
xperimental data for the   σ   y  versus  r  relations may cover the 
idest range of nanowire radius ever reported before (see 
bH & Co. KGaA, Weinheim Adv. Funct. Mater. 2011, 21, 279–286



FU
LL P

A
P
ER

www.afm-journal.de
www.MaterialsViews.com

      Figure  6 .     Schematic diagrams showing the preparation procedures for 
the testing structures (including SEM images of fabricated structures). 
a) AFM bending and b) nanoindentation.  
Figure  5 ). Therefore, now the size-dependency of the yield 
strength becomes much clearer for a wider range of radii, 
which might contribute to a further step towards a complete 
understanding of nanowire mechanics.    

 3. Conclusions 

 A variety of nanomechanical tests have been systematically 
performed to accurately determine the elastic modulus and 
© 2011 WILEY-VCH Verlag GmAdv. Funct. Mater. 2011, 21, 279–286
yield strength of VLS-grown  < 111 >  Si nanowires with radii 
between 15 and 70 nm (which may be the widest range in this 
research fi eld). Direct comparison of the experimental results 
revealed that the AFM bending based on the line tension 
model provided the most accurate mechanical properties of Si 
nanowires. The experimental guideline of the AFM bending 
test was also provided by a series of systematic fi nite element 
simulations. Then, the size-dependency of the mechanical prop-
erties was investigated for a wide range of nanowire radii from 
15 to 70 nm. The estimated elastic modulus of Si nanowires 
was about 185 GPa and does not signifi cantly change with the 
size of nanowire, whereas the yield strength showed a strong 
size effect and increased from 2 to 10 GPa with reduced radius. 

 It is hoped that these results and suggestions will be valuable 
for establishing reliable ways to estimate mechanical perform-
ance of semiconducting nanowires. Nevertheless, for providing 
more practical information in the fi eld of the nanowire-based 
optoelectric device fabrication, there are some remaining ques-
tions that are desirable to be addressed in future studies, for 
example, “How can the doping (which is required to be pre-
cisely made during the fabrication) affect the mechanical prop-
erties of silicon nanowires?” Note that the effect is still very con-
troversial even for bulk Si samples, i.e., some [  43  ,  44  ]  reported the 
properties were enhanced by doping, but others [  45  ,  46  ]  showed 
the doping could deteriorate the properties. More importantly, 
many more III–IV group nanowires must be tested and ana-
lyzed to evaluate critically the applicability of the results.   

 4. Experimental Section 
 The examined Si nanowires were synthesized in a horizontal tube furnace 
equipped with a 1.5 in. diameter quartz tube via a Au nanocluster-
catalyzed VLS method. [  47  ]  Using solution-deposited Au colloids with 
diameters in the range of 20–100 nm, single-crystal Si nanowires with 
radii between 15 and 90 nm and lengths of more than 10  μ m were 
obtained. 

  Figure    6   schematically illustrates the fabrication procedures for 
two testing structures with double clamped Si nanowire arrays: (i) 
suspended nanowires for AFM bending and (ii) nanowires laid on the 
substrate surface for nanoindentation. For the testing structure of AFM 
bending (Figure  6a ), a 300-nm-thick poly(methyl methacrylate) (PMMA) 
layer was initially spin-coated on the SiO 2 /Si substrate and baked at 
120  ° C for 2 min. Horizontally aligned Si nanowire arrays were then 
deposited on the PMMA layer by the contact print method, [  48  ]  followed 
by spin-coating of a photoresist (PR) AZ1512 layer on the aligned wires. 
The PR line patterns were defi ned by the conventional photolithography 
process. Soft- and hard-baking (95  ° C for 1 min and 120  ° C for 2 min, 
respectively) were performed before and after the lithography process. 
Subsequently, O 2  plasma etching was conducted using the remaining 
PR as an etching mask, in order to etch the exposed PMMA and thus 
to fabricate appropriate trenches. In fi nal structure, both ends of 
the nanowire were clamped by the PMMA and PR layers, which were 
suffi ciently cured. The depth of the trench was about 200–300 nm, which 
is almost same as the thickness of PMMA. The width of the trench was 
about 4  μ m and could be controlled by varying the lithograph mask size 
or O 2  plasma etching time. On the other hand, the process for a testing 
structure for nanoindentation (Figure  6b ) was similar to that of AFM 
bending, except for the initial PMMA coating; the sequences consisted of 
arraying nanowires on the substrate, spin-coating PR, a photolithography 
process, and O 2  plasma etching. Representative examples of the fi nal 
structures for both AFM bending and nanoindentation are shown in the 
scanning electron microscopy (SEM) images in Figure  6 .  
bH & Co. KGaA, Weinheim 285wileyonlinelibrary.com
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 Optical microscopy using dark-fi eld mode (BX51, Olympus, UK) 
and fi eld-emission SEM (FE-SEM, S-4800, Hitach, Japan) were used 
for selecting well-aligned nanowires and characterizing the geometry 
of both nanowires and the AFM cantilever. AFM bending tests were 
carried out using an XE-100 (Park Systems, Suwon, Korea) with the non-
contact mode cantilever having a spring constant of 40 N m  − 1 , while 
nanoindentation was performed by using Triboindenter (Hysitron Inc., 
Minneapolis, MN) with two different three-sided pyramidal diamond 
indenters having different centerline-to-face angles,   ψ  ; a typically used 
Berkovich (  ψ    =  65.3 ° ) and sharper cube-corner tip (  ψ    =  35.3 ° ). After 
a series of nanoindentations on fused quartz, the area function of 
the indenter tip was calibrated in the range of contact depth we were 
interested in. Thermal drift correction was made before each test. To 
avoid serious substrate effects, the maximum indentation depth was 
kept to less than 30% of the nanowire diameter. [  11  ]  In addition to the 
experimental analysis, a series of fi nite element simulations was also 
performed with ABAQUS (HKS Inc., Pawtucket, RI) software. The eight-
node 3D mesh comprised of 38 080 linear elements was used for the 
bending simulation, while the four-node axi-symmetric mesh comprised 
of 10 000 (and 4 821) linear elements was used for the simulation of the 
indentation on the fl at (and rounded) surface.  

   Acknowledgements  
 This work was supported by the Mid-Career Researcher Program through 
NRF grant funded by the MEST (No. R01–2008-000–20778-0).   

 Received: July 20, 2010 
 Revised: September 14, 2010 

Published online: November 15, 2010 

      [ 1 ]     R.   Beckman  ,   E.   Johnston-Halperin  ,   Y.   Luo  ,   J. E.   Green  ,   J. R.   Heath  , 
 Science   2005 ,  310 ,  465 .  

     [ 2 ]     J.   Goldberger  ,   A. I.   Hochbaum  ,   R.   Fan  ,   P.   Yang  ,  Nano Lett.   2006 ,  6 , 
 973 .  

     [ 3 ]     F.   Patolsky  ,   C. M.   Lieber  ,  Mater. Today   2005 ,  8 ,  20 .  
     [ 4 ]     O.   Hayden  ,   R.   Agarwal  ,   C. M.   Lieber  ,  Nat. Mater.   2006 ,  5 ,  352 .  
     [ 5 ]     M. D.   Kelzenberg  ,   D. B.   Turner-Evans  ,   B. M.   Kayes  ,   M. A.   Filler  , 

  M. C.   Putnam  ,   N. S.   Lewis  ,   H. A.   Atwater  ,  Nano Lett.   2008 ,  8 ,  710 .  
     [ 6 ]     B.   Wu  ,   A.   Heidelberg  ,   J. J.   Boland  ,  Nat. Mater.   2005 ,  4 ,  525 .  
     [ 7 ]     D.   Almecija  ,   D.   Blond  ,   J. E.   Sader  ,   J. N.   Coleman  ,   J. J.   Boland  ,  Carbon  

 2009 ,  47 ,  2253 .  
     [ 8 ]     B.   Wen  ,   J. E.   Sader  ,   J. J.   Boland  ,  Phys. Rev. Lett.   2008 ,  101 ,  175502 .  
     [ 9 ]     G. Y.   Jing  ,   H. L.   Duan  ,   X. M.   Sun  ,   Z. S.   Zhang  ,   J.   Xu  ,   Y. D.   Li  , 

  J. X.   Wang  ,   D. P.   Yu  ,  Phys. Rev. B   2006 ,  73 ,  235409 .  
    [ 10 ]     M. J.   Gordon  ,   T.   Baron  ,   F.   Dhalluin  ,   P.   Gentile  ,   P.   Ferret  ,  Nano Lett.  

 2009 ,  9 ,  525 .  
    [ 11 ]     X.   Li  ,   H.   Gao  ,   C. J.   Murphy  ,   K. K.   Caswell  ,  Nano Lett.   2003 ,  3 ,  1495 .  
    [ 12 ]     G.   Feng  ,   W. D.   Nix  ,   Y.   Yoon  ,   C. J.   Lee  ,  J. Appl. Phys.   2006 ,  99 , 

 074304   
    [ 13 ]     X.   Tao  ,   X.   Li  ,  Nano Lett.   2008 ,  8 ,  505 .  
    [ 14 ]     G.   Stan  ,   C. V.   Ciobanu  ,   P. M.   Pathangal  ,   R. F.   Cook  ,  Nano Lett.   2007 , 

 7 ,  3691 .  
    [ 15 ]     Z. L.   Wang  ,   R. P.   Gao  ,   P.   Poncharal  ,   W.   A. de Heer  ,   Z. R.   Dai  , 

  Z. W.   Pan  ,  Mater. Sci. Eng., C   2001 ,  16 ,  3 .  
    [ 16 ]     C. Q.   Chen  ,   Y.   Shi  ,   Y. S.   Zhang  ,   J.   Zhu  ,   Y. J.   Yan  ,  Phys. Rev. Lett.   2006 , 

 96 ,  075505 .  
    [ 17 ]     R.   Dou  ,   B.   Derby  ,  Scr. Mater.   2008 ,  59 ,  151 .  
    [ 18 ]     C. L.   Hsin  ,   W.   Mai  ,   Y.   Gu  ,   Y.   Gao  ,   C. T.   Huang  ,   Y.   Liu  ,   L. J.   Chen  , 

  Z. L.   Wang  ,  Adv. Mater.   2008 ,  20 ,  3919 .  
© 2011 WILEY-VCH Verlag Gwileyonlinelibrary.com
    [ 19 ]     Y.   Zhu  ,   F.   Xu  ,   Q.   Qin  ,   W. Y.   Fung  ,   W.   Lu  ,  Nano Lett.   2009 ,  9 ,  3934 .  
    [ 20 ]   Since these contact-based methods cannot perfectly avoid the 

contact-induced experimental artifacts, sometimes noncontact 
methods, including an electric-fi eld-induced resonance method, are 
preferred. However, such a noncontact method can estimate only 
elastic properties and cannot provide information about non-elastic 
behavior (yielding and plasticity).  

    [ 21 ]     S. Q.   Shu  ,   Y.   Yang  ,   T.   Fu  ,   C. S.   Wen  ,   J.   Lu  ,  J. Mater. Res.   2009 ,  24 , 
 1054 .  

    [ 22 ]     N. K.   Chang  ,   Y. S.   Lin  ,   C. Y.   Chen  ,   S. H.   Chang  ,  Thin Solid Films  
 2009 ,  517 ,  3695 .  

    [ 23 ]     W.   Liu  ,   K.   Bonin  ,   M.   Guthold  ,  Rev. Sci. Instrum.   2007 ,  78 ,  063707 .  
    [ 24 ]   From the viewpoint of a local bond average (LBA) approach for 

defect-free crystalline materials, one may argue that the equational 
origin for the elastic modulus  E  and yield strength   σ   y  should be dif-
ferent from each other because they are physically independent;  E  
and   σ   y  are for an equilibrium and a non-equilibrium state, respec-
tively. However, with a simple continuum mechanics viewpoint,  E  
and   σ   y  can have the same mechanical origin (that is elastic stress-
strain relationship), as   σ   y  should satisfy the constitutive equations 
for both elastic and plastic regimes. Also, it is noteworthy that, for 
estimating real   σ   y , one should take into consideration the struc-
tural defects (whether crystalline defects or mechanical fl aws) that 
practically control the yielding, plasticity, and failure of crystalline 
materials.  

    [ 25 ]     W. D.   Callister  ,   Fundamentals of Materials Science and Engineering: 
An Integrated Approach  ,  John Wiley & Sons ,  New York   2005 .  

    [ 26 ]     B.   Lawn  ,   Fracture of Brittle Solids  ,  Cambridge University Press , 
 Cambridge, UK   1993 .  

    [ 27 ]     G. M.   Pharr  ,  Mater. Sci. Eng., A   1998 ,  253 ,  151 .  
    [ 28 ]     B.   Bhushan  ,   X.   Li  ,  Int. Mater. Rev.   2003 ,  48 ,  125 .  
    [ 29 ]     Y. G.   Jung  ,   A.   Pajares  ,   R.   Banerjee  ,   B. R.   Lawn  ,  Acta Mater.   2004 ,  52 , 

 3459 .  
    [ 30 ]     M.   Hebbache  ,  Solid State Commun.   2000 ,  113 ,  427 .  
    [ 31 ]     R.   Hull  ,   Properties of Crystalline Silicon  ,  INSPEC ,  London, UK   1997 .  
    [ 32 ]     W. C.   Oliver  ,   G. M.   Pharr  ,  J. Mater. Res.   1992 ,  7 ,  1564 .  
    [ 33 ]     K. L.   Johnson  ,   Contact Mechanics  ,  Cambridge University Press , 

 Cambridge, UK ,  1985 .  
    [ 34 ]     A. C.   Fischer-Cripps  ,  J. Mater. Res.   2007 ,  22 ,  3075 .  
    [ 35 ]     J.   Lian  ,   J.   Wang  ,   J. Y.   Kim  ,   J.   Greer  ,  J. Mech. Phys. Solids   2009 ,  57 , 

 812 .  
    [ 36 ]     A.   Heidelberg  ,   L. T.   Ngo  ,   B.   Wu  ,   M. A.   Phillips  ,   S.   Sharma  , 

  T. I.   Kamins  ,   J. E.   Sader  ,   J. J.   Boland  ,  Nano Lett.   2006 ,  6 ,  1101 .  
    [ 37 ]     C. Q.   Sun  ,  Prog. Mater Sci.   2009 ,  54 ,  179 .  
    [ 38 ]     X. J.   Liu  ,   J. W.   Li  ,   Z. F.   Zhou  ,   L. W.   Yang  ,   Z. S.   Ma  ,   G. F.   Xie  ,   Y.   Pan  , 

  C. Q.   Sun  ,  Appl. Phys. Lett.   2009 ,  94 ,  131902 .  
    [ 39 ]     C.   Battaglia  ,   K.   Gaal-Nagy  ,   C.   Monney  ,   C.   Didiot  ,   E. F.   Schwier  , 

  M. G.   Garnier  ,   G.   Onida  ,   P.   Aebi  ,  J. Phys.: Condens. Matter   2009 ,  21 , 
 013001 .  

    [ 40 ]     H.   Ni  ,   X.   Li  ,   H.   Gao  ,  Appl. Phys. Lett.   2006 ,  88 ,  043108 .  
    [ 41 ]     B.   Lee  ,   R. E.   Rudd  ,  Phys. Rev. B   2007 ,  75 ,  195328 .  
    [ 42 ]     K.   Kang  ,   W.   Cai  ,  Int. J. Plast.   2010 ,   26  ,  1387 ..  
    [ 43 ]     G.   Yu  ,   J.   Watanabe  ,   K.   Izumi  ,   K.   Nakashima  ,  Jpn. J. Appl. Phys,   2001 , 

 40,   L183 .  
    [ 44 ]     P. M.   Nagy  ,   D.   Aranyi  ,   P.   Horvath  ,   G.   Peto  ,   E.   Kalman  ,  Surf. Interface 

Anal.   2008 ,  40 ,  875 .  
    [ 45 ]     B.   Bhushan  ,   X.   Li  ,  J. Mater. Res.   1997 ,  12 ,  54 .  
    [ 46 ]     Z.   Zeng  ,   X.   Ma. J. Chen  ,   Y.   Zeng  ,   D.   Yang  ,   Y.   Liu  ,  J. Appl. Phys.   2010 , 

 107 ,  123503 .  
    [ 47 ]     K.-S.   Son  ,   D. H.   Lee  ,   J.-W.   Choung  ,   Y. B.   Pyun  ,   W. I.   Park  ,   T.   Song  , 

  U.   Paik  ,  J. Mater. Res.   2008 ,  23 ,  3403 .  
    [ 48 ]     A.   Javey  ,   S. W.   Nam  ,   R. S.   Friedman  ,   H.   Yan  ,   C. M.   Lieber  ,  Nano Lett.  

 2007 ,  7 ,  773 .   
mbH & Co. KGaA, Weinheim Adv. Funct. Mater. 2011, 21, 279–286




