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We systematically explored the indentation size effect (ISE), which is not expected to occur in non-crystalline materials due to the
absence of dislocations and strain hardening, in bulk metallic glass (BMG). A series of nanoindentation experiments with different
indenters result in somewhat surprising observations that show that ISE clearly does exist in BMG and can even be described by the
ISE model for crystalline materials. The results are discussed in terms of possible mechanisms responsible for the ISE in BMG.
© 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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With the rapid advances in small-scale mechani-
cal testing techniques over the past two decades, funda-
mental knowledge about the size effects on the strength
and plasticity of crystalline materials has widened
remarkably. A representative example of such size effects
is the so-called indentation size effect (ISE), which is
manifested as an increase in hardness H with decreasing
impression size 4, indentation depth /4 or peak load P,«
(see the recent review [1]). While the ISE was often ob-
served during nanoindentation experiments made with
a geometrically self-similar pyramidal indenter (such as
the commonly used Berkovich and Vickers indenters),
the size-dependency of the hardness H (defined as
P.x/A) could not be explained by continuum plasticity
concepts for which there is no inherent material length
scale and thus the H should be independent of the A.
To analyze this intriguing phenomenon, early works on
the ISE mostly adopted strain gradient plasticity theory
(that is, geometrically necessary dislocations (GNDs)
would nucleate for accommodating plastic strain gradi-
ents in bending or indentation, and thus would increase
the strength) and proposed possible relationship between
the GNDs and the ISE [1]. The most popular mecha-
nism-based ISE model was established by Nix and Gao
[2], who considered the density of GNDs (generated by
a sharp indenter) together with a Taylor’s dislocation
strengthening model. In the Nix—-Gao model [2], the rela-
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tion between the indentation hardness (H) and the inden-
tation depth (%) can be simply described as

H h*

a1+ 1
T + (1)
where /" is a characteristic length and H, is the macro-

scopic indentation hardness (when % is much greater
than 4"). The A" is given as

2
= %bcxzcotzﬂ (I-(I;o) (2)

where b is the Burgers vector, o is a geometric constant,
0 is the half-cone angle and G is the shear modulus.
Since the linear relation between (H)* and (1/h) in Eq.
(1) successfully predicted the experimental indentation
hardness data for many crystalline materials, the Nix—
Gao model has been applied extensively [1].

Since the Nix—Gao model is based on dislocation
strengthening, one may imagine that the ISE does not oc-
cur in materials which have a non-crystalline (amorphous)
structure or show no strain hardening. An interesting
example of such materials is bulk metallic glasses (BMGs),
which have recently attracted much interest from both the
scientific and technological viewpoints. BMGs do not con-
tain crystalline defects such as dislocations, so dislocation-
mediated plasticity does not occur in these materials.
Instead, they exhibit a unique form of plastic deformation:
at ambient temperature, plastic strain is highly localized
into very narrow “shear bands” within which are a densely
population of collective atomic rearrangements called
shear transformation zones (STZs; these are the
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fundamental carriers of plasticity in metallic glasses) [3].
Due to this shear-band-mediated plasticity, the size-
dependent hardness cannot be expected in BMGs, how-
ever, some researchers have reported ISE-like behavior
in Zr-, Pd-, and Fe-based BMGs [4-11].

While only a limited number of reports have been pub-
lished concerning the possibility of the ISE phenomenon
in BMGs, many more studies have been devoted to a dif-
ferent type of size effect on the strength of BMGs, i.e. the
sample size effect (SSE) on strength from uniaxial com-
pression/tension tests of nano-/micropillar samples [12—
25]. However, there is no consensus on the SSE of BMGs;
some researchers have shown that “smaller is stronger”
[12,13,23-25], whereas others have reported the opposite
trend [14,19]. It has been also proposed that the strength
of BMG is actually size-independent [15-18,20-22]. It is
noteworthy that there are clear differences in the mechan-
ical environment between nanoindentation and uniaxial
nano-/micropillar tests, which may lead to the different
mechanisms for the ISE and SSE. First, unlike pillar
tests, the plasticity (and fracture) in the highly stressed
volume beneath the indenter is constrained by the sur-
rounding materials, and thus catastrophic failure does
not occur during indentation. Secondly, and more impor-
tantly, complex three-dimensional stress/strains and
strain gradients are developed in the sample during
indentation whereas the uniaxial pillar sample experi-
ences almost no strain gradient. Therefore, unlike the
ISE, the SSE cannot be explained by the strain gradients.
Even for crystalline materials in which the ISE and SSE
usually follow the same “smaller is stronger” trend, dif-
ferent mechanisms have been developed, i.e. the strain
gradients model for the ISE and the dislocation starva-
tion model for the SSE, as reviewed in Ref. [26].

In this work, we systematically analyzed the possibil-
ity of ISE in a Zr-based BMG through nanoindentations
with a series of three-sided pyramidal indenters having
different indenter angles from 35.3° to 70°. The purpose
of this letter is to report our somewhat surprising obser-
vations that clear ISE does indeed exist in the BMG and
can be described by the Nix—Gao rule originally sug-
gested for crystalline materials [2].

The bulk metallic glass examined in this work is a Zr-
based BMG, Zrs> sCu;7.9Nij46Al1oTis (referred to as Vit
105), which was produced in the form of a rod having a
diameter and length of about 7 and 70 mm, respectively.
The non-crystalline structure of the sample was con-
firmed by the absence of a crystalline peak in the X-ray
diffraction pattern (shown elsewhere [27]). Nanoindenta-
tion experiments were performed using a Nanoindenter-
XP instrument (MTS Corp., Oak Ridge, TN) at various
loads in the range from 5 to 500 mN. Four different tri-
angular pyramidal indenters having centerline-to-face
angles, Y, of 35.3° (cube-corner), 50°, 65.3° (Berkovich)
and 70° were employed. The accuracy of the angle was
reported by the manufacturer to be within +0.15°. In
all the nanoindentation experiments the tests were per-
formed at a constant indentation strain rate of 0.05s™"
and the thermal drift was maintained below 0.05 nms™"'.
All the hardness impressions were imaged using a JSM-
6330F field-emission scanning electron microscope
(SEM; JEOL Ltd., Tokyo, Japan) to measure the actual
area of the contact. The topological feature of the in-

dented surface was also identified by an XE-100 atomic
force microscope (AFM; Park Systems, Suwon, Korea).

Representative examples of load—displacement (P-#%)
curves recorded during nanoindentation at various peak
loads (Prax) up to 500 mN (except for the sharpest case
of 35.3°, in which the highest peak load was set to be
200 mN to avoid the tip breaking at high loads) are pro-
vided in Supplementary material (see Figure S1). It is evi-
dent that, for a given P,,.., a sharper indenter (i.e. an
indenter having a smaller angle) produced a larger
peak-load displacement (/,,x), implying that a sharper
indenter induces greater stresses and strains in the mate-
rial due to the larger volume of displaced material [28-30].

The beauty of nanoindentation technique is that one
can estimate the hardness and effective modulus by only
P-hcurve analysis, without observation of the indentation
impression. The most popular way to perform this analysis
is the Oliver—Pharr method [31], which was also used to
calculate the BMG hardness in most of the previous works
reporting the ISE-like behavior of BMGs [4-11].

In the present work, however, we did not adopt the
Oliver-Pharr method for two reasons. First, in BMG
samples, severe material pile-up is usually observed
around the indentation impression. Such pile-up is not ta-
ken into consideration in the Oliver—Pharr method, and it
can thus induce an overestimation of the calculated hard-
ness. In this regard, it is interesting to note that recently
Charleux et al. [32] reported a more pronounced pile-up
at smaller displacements in nanoindentations of Virtol-
y-1 BMG. If this holds true, the amount of pile-up-in-
duced overestimation may be greater at smaller depth,
which could result in the ISE-like trend and even asks
the question: is the reported ISE-like behavior an artifact
related to miscalculations of the hardness? To clarify this
issue, the pile-up amount here was evaluated through
AFM analysis (see Fig. 1). It was revealed that, while
the ratio of the pile-up height (/pjje-up) to the maximum
displacement (/tmay), Apite-up/imax. for the Berkovich in-
denter (centerline-to-face angle y = 65.3°) increased with
reducing peak load (which is in good agreement with
Charleux et al.’s results [32]), the opposite trend was ob-
served for the cube-corner indenter (y = 35.3°). This
inconsistency in trends (possibly due to the increased
influence of friction for a sharper indenter) may make
the analysis of the hardness variation more complex.

Second, in the Oliver—Pharr method [31], the correla-
tion constant f (which relates stiffness S to area A in the
Oliver—Pharr method) is important for determining the
area function and thus the hardness. However, the proper
f is known only for the commonly used Berkovich inden-
ter (as a constant of 1.034 [31]), and the dependency of the
p value on the indenter angle is still unclear [28], which
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Figure 1. Variation in pile-up amount as a function of indentation load.
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may lead to miscalculations of the hardness data for other
indenters used in this study and thus make it difficult to di-
rectly compare the hardness data from different indenters.
To overcome these difficulties and obtain accurate
hardness values, we measured the impression size A4 di-
rectly from a large number of SEM images (see
Fig. S2 in Supplementary Material), then obtained the
hardness according to the relation H = 4P/(3v/3ad?),
where a is the averaged length measured from the center
of the triangular impression to the corner. The variation
in hardness is summarized as a function of displacement
in Figure 2a, where, interestingly, the ISE is clearly ob-
served for all the indenters used. It should be noted that,
although the hardness for a sharper indenter appears to
be the greater at a given displacement /, the hardness
measured with different indenters cannot be directly
compared for a fixed 4. This is simply because, at a given
Pax, the 1 becomes deeper for a sharper indenter.
Because all used indenters yielded the ISE, we have at-
tempted to examine whether the ISE can be described
according to Eq. (1), i.e. the Nix—Gao model. Figure 2b
shows the plots of the square of hardness (H?) obtained
from SEM images against the reciprocal of the indentation
depth (1/h). A high linearity between H> and 1/h is seen for
all used indenters. One of the interesting predictions of the
Nix—Gao model is that there is a strong dependence of the
hardness behavior on the indenter angle. According to
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Figure 2. Analysis of hardness data according to the Nix-Gao model:
plots of (a) hardness H vs. penetration depth; (b) H* vs. 1/h; and (c)
slope of linear relations in (a) vs. cot? 0.

Egs. (1) and (2), it is apparent that the slope of the linear
relation between H? and 1/4 should rely on cot? 0, which
varies by an order of magnitude depending on one’s choice
of tip. To relate the conical indentation used for Egs. (1)
and (2) to triangular pyramidal indentation in this work,
it is useful to make the normal assumption that similar
behavior is obtained when the angle of the cone gives the
same area-to-depth ratio as the pyramid, which gives the

half-cone angle 0 as 0 = tan™!(/ %tan ), where  is

the centerline-to-face angle. Thus, i values of 35.3°, 50°,
65.3° and 70° correspond to 0 values of 42.3°, 56.9°,
70.3° and 74.2°, respectively.

In Figure 2c, the slopes of the straight lines in Figure
2b are plotted against cot® 0. Somewhat surprisingly, the
plot has very high linearity, implying that the Nix—Gao
model indeed agrees very well with the indentation data
for a wide range of indenter angles.

Two important questions are why does the ISE exist for
non-crystalline materials and how can the ISE be fitted by
the Nix—Gao model? While the detailed mechanisms are
still far from completely understood, the suggestions
made in the limited publications reporting the ISE-like
behavior [4-11] can be roughly categorized into three
groups (to our best knowledge). The first group [4,7]com-
prises the models constructed in a way very analogous to
that used in the Nix—Gao model; the mechanisms pro-
posed by Lam and Chong [4] and more recently by Yang
et al. [7] also adopted the perspective of strain gradient
plasticity, and the only difference between their models
and the Nix—Gao model is that they used the concept of
non-crystalline flow defects instead of dislocations. The
basic assumption in their theories is that the plasticity in-
duced by a strain gradient should be accommodated by
“geometrically necessary” flow defects (either shear clus-
ters [4] or excess free volumes [7]), which can be given as

Ho\/Vs+7Va (3)

where Vg and Vg are the densities of the statistically
stored defects and the geometrically necessary defects.
Therefore, the increased density of the defects at shallow
indentation depth is mainly responsible for the ISE in a
BMG, as the increase in the GNDs is in the Nix-Gao
model. However, this scenario may not be reasonable,
simply because the increase in the glass defects (e.g. ex-
cess free volume [3]) would induce softening rather than
hardening in the metallic glass [27,33,34].

The second group of the suggestions [5,8] is focused
on the strain softening [27,33,34] and on the dependence
of hardness on the strain rate imposed during the inden-
tation. Van Steenberge et al. [8] argued that, for a given
strain rate, the continuous accumulation of excess free
volume during deformation can cause strain softening
at large penetration depth and this softening is the
source of the ISE. They then established a relationship
between the hardness and the strain rate based on the
classical metallic glass flow equations developed by
Spaepen [35] and Argon [36]:

H(~ 3\/57:) x sinhfl(w,')/cf) (4)

where 1 is the shear stress, o is a constant, 7 is the shear
strain rate and cr is the concentration of flow defects.
Based on this relation, they argued that, as the indenta-



756 J. Jang et al. | Scripta Materialia 64 (2011) 753-756

tion strain rate, de/ds=h"'(dh/dr) [8,29], diminishes
during indentation testing under a constant loading rate
(dP/dt), the high indentation strain rate at shallow depth
can induce an increase in hardness [8]. However, this
possibility could be excluded in the present study be-
cause all indentation experiments were performed under
a constant strain rate instead of a constant loading rate
(see Fig. S3 in Supplementary Material). Another short-
coming in this argument is that the strain softening
equation does not take into consideration the geometri-
cal self-similarity of a sharp indenter. From a classical
contact mechanics perspective, the stress (or hardness)
and the strain underneath a sharp indenter should not
vary during indenter penetration. Therefore, in their re-
sult, the hardness change is an experimentally obtained
result (or output) rather than controllable input param-
eter. Thus, this hypothesis can be largely viewed as
empirical rather than analytical.

The third group considers the influences of the surface
effect (including residual stress and friction) [6,9-11] to
be the main cause of the possible ISE in BMG. However,
since they did not account for the strain gradient induced
by a self-similar indenter, there is no way to explain the
angle effect that is very clear in this study.

Collectively, we conclude that the ISE phenomenon
observed in the present work cannot be explained by
any of the existing models and should be interpreted
in a different way. A new possibility we suggest here is
that the occurrence of STZs [3] might be controlled by
the indentation size or the volume of the indentation-in-
duced elastic/plastic deformation. For shallow indenta-
tions, the highly stressed volume beneath the indenter
is probably too small to have a sufficient population of
STZs (which can evolve into the highly active shear
bands, which, in turn, are able to accommodate the plas-
tic deformation) and thus the shear bands are forced to
operate at a particular location, whereas deep indenta-
tions produce a large volume of deformation and thus
higher activities of STZs and shear bands. In this regard,
a higher hardness might be observed for low-load inden-
tations because the glass is demanded to shear in partic-
ular locations. Additionally, this hypothesis can
conceivably explain the angle effect on hardness (i.e.
the seemingly higher hardness for a sharper indenter
shown in Fig. 2a and b) in a qualitative manner. For a
given /i (not for a given P,.y), a sharper indenter having
smaller 6 (or /) produces a smaller contact radius ¢ and
thus a smaller highly-stressed or plastic zone (which is
often considered to be proportional to a*; for example,
2na*/3 in the Nix-Gao model). Therefore, at a given
h, lower activities of STZs and higher hardness may be
expected for a sharper indenter, which is in agreement
with the trend in the present work.
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