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Since residual stresses that are often generated in many components and devices by thermal mismatch or thermal/mechanical
processing can strongly affect their mechanical performance and reliability, there has been considerable scientific and
engineering interest in non-destructively determining the residual stresses in ceramics, glasses and metals. In this regard,
recently much effort has been made to develop new methods of residual stress measurement using an instrumented indentation
technique (especially nanoindentation). In the present paper, the recently-developed methods are critically reviewed and
related issues are discussed in terms of advantages and shortcomings of each method, in order to provide some insight for
future research in the field.
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Introduction

In many engineering components and devices made
of various materials (including ceramics, metals, and
glasses), residual stresses can be introduced by thermal
mismatch or mechanical/thermal processing during their
manufacturing, welding/joining, and sintering operations
[1-4]. For example, residual stresses can be generated in
a thin film system from the thermal expansion mismatch
between the film and substrate during cooling in the
deposition process. Similarly, in engineering alloys reinforced
with hard ceramic particles, residual stresses can be
produced during cooling from the processing temperature,
by the thermal expansion mismatch between the ceramic
particles and the metal matrix. Also, in a welded metal
joint, significant residual stresses are caused by the welding
thermal cycle that generates inhomogeneous heating and
cooling in the regions near the heat source.

It is well known that residual stresses can strongly
affect the mechanical performance (such as the static and
fatigue strengths, fracture toughness, corrosion-/wear-
resistance) and thus the reliability and lifetime of components
and devices in a negative or positive way. For instance,
if a structural component is under an externally applied
tensile stress, compressive residual stresses enhance the
resistance to crack propagation, whereas tensile residual
stresses deteriorate the resistance. For semiconductor devices,
residual stresses can lead to a sharp decrease in their
service life, but under the appropriate internal (or residual)
stresses, the mobility of charge carriers and thus the speed
of the device can be significantly increased [5]. Therefore,

from an engineering viewpoint, to properly measure the
residual stresses can be very important in order to achieve
a reliable engineering design of components and devices.

A variety of methods for the measurement of residual
stresses are currently available [1-4]. The conventional
methods can be divided into two groups: mechanical
stress-relaxation methods and physical-parameter analysis
methods. Mechanical stress-relaxation methods, including
a strain-gauge method for a bulk material (e.g., hole-drilling
and saw-cutting technique) and a curvature measurement
method for a film/coating system (e.g., layer-removal
technique), can generally be used to directly and destructively
evaluate residual stress without any reference sample.
However, their destructive nature limits the wide application
of these techniques in industry. Whereas, physical-parameter
analysis methods (e.g., analysis of X-ray diffraction,
ultrasonic wave, magnetic Barkhausen noise, neutron
diffraction, and Raman spectra) can measure residual
stresses indirectly and nondestructively, and the former
three methods among them have been partially used in
industrial fields. However, it is always difficult to separate
intrinsic microstructural effects on the physical parameters
from the effects of a residual stress, and hence the methods
require the preparation of stress-free reference sample for
comparison purposes. Additionally, the physical methods
cannot be directly applied to amorphous/glass materials
(such as a large-scale glass display panel and a shot-peened
bulk metallic glass) that do not have a long-range ordered
atomic structures.

One more technique to be added into the list of residual
stress measurement methods is instrumented indentation
(especially nanoindentation) that has rapidly emerged
in the past two decades as a powerful tool for exploring
mechanical behavior of a small volume. The instrumented
indentation has made it possible to measure a variety of
mechanical properties (e.g., hardness [6, 7], Young’s modulus
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[6, 7], yield strength [8, 9], work-hardening exponent
[10, 11], creep stress exponent [12, 13], fracture toughness
[14, 15]) and small-scale mechanical behavior (e.g.,
indentation size effect [16, 17], pressure-induced phase
transformation of semiconductors [18, 19], inhomogeneous
deformation of amorphous alloys [20, 21]) only by analyzing
the indentation load-displacement (P-h) curve without the
need to observe a hardness impression using a microscopy.
Recently many studies have been undertaken to develop
new ways to measure residual stress using instrumented
indentation, because this non-destructive/mechanical tech-
nique may overcome the limitations of conventional methods
including both the destructive/mechanical and nondestructive/
physical methods. Although a number of reviews on
instrumented indentation and nanoindentation are available
in literature [5, 22-31], to the best of my knowledge, no
review is fully devoted to the application of the technique
to residual stress measurement. The present paper reviews
the fundamentals and recent advances in the ways to estimate
residual stresses through instrumented indentation test. 

Early Studies Using a Conventional 
Hardness Test

The investigations for measuring residual stress using
instrumented indentation was originally motivated by
earlier hardness studies in which the change in hardness
by the applied uniaxial or biaxial stresses was observed
through conventional Rockwell or Vickers hardness tests.
In 1932, Kokubo [32] performed experiments on various
metals (including steels, brass, Al, Cu, etc.) to show the
effect of strain on hardness measurements. In the study,
he applied a bending stress to cause 0.3% strain on the
outer surface of the specimen and performed Vickers
hardness tests at a peak load of 5 kgf on the surface of
the specimen under the strained state. Then, he reported
that applied tensile stresses made the material appear
5~12% softer while compressive stresses caused only a
0~3% increase in apparent hardness.

Based on Kokubo’s work [32], Sines and Carlson [33]
performed Rockwell hardness tests on a high carbon steel
bar under an applied 4-point bending stress, and suggested
a way of ‘hardness measurements for determination of
residual stresses’ (which is the title of their paper). A
representative result in their work is shown in Fig. 1
(which was reproduced in [34]). It is clear that, if the
applied stress is tensile, the material appears softer as
the applied stress is increased although the change in
hardness is small (less than 10%). An applied compressive
stress seems to make the material appear a little harder, but
the change in hardness is almost negligible (less than 1%).
Thus, the influence of stress was greater for specimens
loaded in tension than those loaded in compression.

In 1950, Pomey et al. [35] suggested a method of
measuring residual stress based on the observation that
surface residual stress affected the yield strength which
was obtained when a spherical indentation was made on

the smooth surface of the test specimen. While a hard
spherical indenter with a diameter of 0.4~1.5 mm was
pressed with increasing load, the electric resistance of the
contact point was recorded. A sudden fall in resistance
occurred when the material beneath the indenter became
plastic. The corresponding load gave the surface stresses
of the specimen. In 1973, Underwood [36] estimated
the residual stress by examining the shape of the pile-
up occurring at the edge of the contact circle. Deviations
in shape provided some information about the level and
sign of residual stress within the specimen.

One of the most popular methods used to estimate
residual stresses in brittle ceramics and glasses using a
conventional hardness test is indentation cracking test
(typically performed for estimating indentation fracture
toughness). Some researchers have examined the critical
load of crack initiation to determine the magnitude and
direction of surface residual stress in brittle materials
[37]. Chaudhri and Phillips [38], and Chandrasekar and
Chaudhri [39] reported that the residual stress can be
determined by:

(1)

where c is the length from the center of hardness impression
to the crack tip, Pc(R) and Pc are the loads that produce
cracks of the same c in glass with and without a residual
stress, respectively, and ψ is a constant dependent on

σR

ψ Pc R( ) Pc–( )

1.6c
2

----------------------------=

Fig. 1. Change in Rockwell B hardness produced by uniaxial
stresses in a high carbon steel bent bar (reproduced in [34] using
the data of [33]).
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the indenter geometry; for a Vickers indenter, 

(2)

In some investigations performing indentation cracking
tests, the size of radial cracks generated with a sharp Vickers
indenter in brittle solids has been used as a means of
determining the residual stresses. Zeng and Rowcliffe
[40, 41] carried out indentation cracking tests on glass,
and proposed that one can estimate residual stresses if a
comparison is made of the equation for the indentation
fracture toughness of the unstressed material;

(3)

and that for the toughness of the material under a
residual stress, given by:

(4)

Here, KC is the indentation fracture toughness, χ is a
constant (depending on the indenter geometry, Young’s
modulus, and hardness), η is the crack geometry factor,
c and cR are the length from the center of the impression to
the crack tip for the unstressed and stressed material
respectively. In Eq. (4), the positive sign is for a tensile
stress and the negative one is for a compressive stress.
Noting that the same χ and P are involved in both
expressions, the residual stress can be solved by
combining Eqs. (3) and (4):

(5)

A similar approach was made for a thin-film system
by Zhang et al. [42], and Kese and Rowcliffe [43]
demonstrated that Eq. (5) holds valid for nanoin-
dentation fracture toughness tests using a cube-corner
indenter having a centerline-to-face angle of 35.3o that
is much sharper than a typical Berkovich indenter (with
the angle of 65.3o).

Initial Observations Using Instrumented 
Indentation

Since its commercialization in the middle of the 1980s,
instrumented indentation technique (especially nanoinden-
tation) has proven to be a powerful tool for measuring
small-scale mechanical properties of materials. Unlike
conventional hardness tests measuring hardness by imaging a
hardness impression, instrumented indentation provides the
mechanical properties purely by analyzing the curve of
indentation load, P, vs. the penetration displacement, h, both
of which are recorded during entire loading and unloading

sequences. Fig. 2 exhibits a typical load-displacement
(P-h) curve of an indentation made with a sharp indenter.
From the curve, the indentation hardness H (which is equal
to the mean contact pressure, pm) can be determined by:

(6)

where AC is the projected contact area that may be a
geometrical function of the contact depth, hC. For example,
AC = 24.5hC

2 for an ideal Berkovich tip. According to
the most popular method proposed by Oliver and Pharr
[7], the contact depth can be given by:

(7)

where ω is a geometric parameter that is 0.72 for a cone,
0.75 for a Berkovich tip and rounded tip, and 1 for a
flat punch, and S is the stiffness that can be measured
as the initial slope of the unloading curve (see Fig. 2).

Perhaps the first reported attempt to measure a residual
stress by analyzing the nanoindentation P-h curve is that
of LaFontaine et al. [44] who examined the nanoindentation
hardness (obtained by P-h curve analysis) of thin aluminum
films thermally processed to produce a biaxial tensile stress
as high as 380 MPa. X-ray diffraction analysis revealed that
during aging (for ~100 h) at room temperature the biaxial
stress relaxed by ~50% and the nanoindentation hardness
increased by ~200%. Based on the observed relationship
between the residual stress and nanoindentation hardness,
they suggested a simple way to extract the residual stress (σR)
from nanoindentation experiments, which can be given as:

(8)

and
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Fig. 2. Typical example of a load-displacement curve recorded
during instrumented indentation [7,22].
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(9)

Here σY,app and σY are the uniaxial yield strength of a
material with and without residual stress respectively, b
is a proportionality constant, δH is the change in nanoin-
dentation hardness due to the presence of a residual
stress, and C is the constraint factor that can be empirically
determined by [45-46]:

(10)

where σ is the yield strength or the flow stress at an
representative strain underneath the indenter. Although the
residual stresses estimated by nanoindentation tests are in
a good agreement with those measured by X-ray diffraction,
no clue to the physical meaning of the proportionality
constant (b) and how to determine it was provided in
the paper.

Nanoindentation research on the issue of residual stress
measurement accelerated in the middle of 1990s with
the systematic analysis of the residual stress effects on the
indentation behavior by both experiments and simulations
reported in two companion papers by Tsui et al. [34] and
Bolshakov et al. [47]. In the first paper by Tsui et al. [34],
a series of nanoindentation experiments were performed
on Al 8009 alloy samples under either uniaxially or biaxially
applied stresses. When the hardness was measured according
to Oliver-Pharr method [7], a change in hardness with the
applied stress (which might be replaced by the residual
stress for a real system) was clearly observed, i.e., the
hardness increased with the applied compressive stress,
and decreased with the applied tensile stress, which is in a
good agreement with the results in earlier studies using
conventional hardness tests [32, 33]. However, their succes-
sive, careful examination of real indentation contact areas
using optical micrographs at high magnification (taken
with an oil immersion lens) revealed that the hardness
change with the applied stress was not a fact, but rather
an experimental artifact caused by the influence of stress
on the geometry of material pile-up around the hardness
impression. Fig. 3 compares the contact area AC measured
optically and that predicted from a P-h curve analysis [34].
It is obvious that, for the examined Al 8009 alloy, the real
contact area (measured optically) is essentially independent
of the applied stress while the contact area predicted from
the curve shows a strong dependence on the stress. According
to Eq. (6), this means that the optically-measured hardness
might be almost independent of applied stress while the
hardness by the Oliver-Pharr method is strongly dependent
on the stress. From these results, Tsui et al. [34] concluded
that, for the Al 8009 sample under a compressive stress,
due to the pile-up developed around the edges of a hardness
impression, the hardness by the Oliver-Pharr method was
overestimated by an amount up to as large as 15%.
Curiously, however, the stress-independence of real hardness
is in direct contrast to results obtained from conventional
hardness tests [32, 33].

In a follow-up study by Bolshakov et al. [47], a series
of finite element simulations of elastic-plastic indentations
in the Al 8009 alloy were performed to establish how
the indentation pile-up is influence by an applied (or
residual) stress. As a result, it was confirmed that the
failure to properly account for the pile-up in the Oliver-
Pharr method gives rise to an artificial dependence of
the measured hardness and elastic modulus on the applied
stress. Also, they suggested an important feature as
schematically shown in Fig. 4; the shape of the loading
curve (and the unloading curve that is not shown here)
deviates from the ideal shape of the unstressed sample,
even if the deviation is often too small to be accurately
measured during nanoindentation experiments.

Although these two studies [34, 47] did not provide a
detailed procedure for determining residual stress using
nanoindentation (or instrumented indentation), they gave
an important insight that motivated much following
research on the issue: while real hardness may not be
influenced by residual stress, the nanoindentation hardness
estimated by the curve analysis (according to the Oliver-
Pharr method) can be seriously affected by the stress. Thus,
one may conceivably estimate the residual stress by analyzing
the deviation in the shape of the indentation curve from
the ideal shape. Following the above studies, Zagrebelny
and Carter [48] experimentally proved that the curve
shift due to a residual stress also occurs in a silicate-
glass system as shown in Fig. 5.

It is interesting to note that, independently of the above
studies, a similar observation of a P-h curve shift was

σR

δH

bC
-------=

H pm Cσ= =

Fig. 3. A comparison of optically measured contact areas with
those predicted from analysis of nanoindentation P-h curves [34].
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reported in Japan, though it has not been well recognized.
Ishihara and Oku [49] performed micro-indentation on
the surface of a specimen under uniaxial tensile loading.
It was found that the P-h curve of the specimen under a
tensile residual strain of 0.2% exhibited a higher peak-
load displacement than that of a stress-free specimen.

Models for Instrumented Sharp Indentation

Model by Suresh and Giannakopoulos
The work of Tsui et al. [34] and Bolshakov et al. [47]

demonstrated that the shape of the indentation curve
and thus the ‘apparent’ hardness are indeed affected by a
residual stress in a manner that might be useful in char-
acterizing the stress. This led Suresh and Giannakopoulos
[50] to propose a simple methodology for estimating a
residual stress through instrumented indentation with a
sharp indenter. Their model is on the basis of two assump-

tions; first, the elastic equi-biaxial residual stress at the
surface is uniform over the depth of influence of the indenter;
second, an equi-biaxial residual stress state at the indented
surface would be equivalent to a hydrostatic stress plus
a uniaxial stress component that can induce a differential
indentation force.

Then, they considered the influence of a residual
stress on the indentation curve shape and thus estimated
the residual stress by taking the variation in the contact
area into account. In the case of a tensile stress, they
suggested as an equation:

(11)

where Aapp,R is the apparent contact area of the sample
under a residual stress and Aapp,free is the apparent contact
area of the stress-free sample. In the case of a compressive
residual stress: 

(12)

Here α is the inclination of a sharp indenter to the
surface, i.e., α = 22o for a four-sided pyramidal Vickers
indenter, 24.7o for a three-sided pyramidal Berkovich
indenter, and 19.7o for an equivalent conical indenter.
Note that the difference between Eq. (11) and (12) agrees
well with the nonlinear trend from compression to tension,
as observed earlier [32-34]. However, because the stress
influence on the contact area is relatively small in
nanoindentation experiments (Tsui et al. [34] found the
maximum change in hardness to be no more than 10%),
this method may be practical only when the residual stress
is very high (near the yield stress) and only in those
materials in which material pile-up is pronounced. This
may make it difficult to use the method for general
practical applications.

Model by Carlsson and Larsson
Carlsson and Larsson [51, 52] analyzed sharp indentation

behavior to explore how an equi-biaxial residual stress
and strain fields can be determined from the contact area
A and the indentation hardness H. In the first paper
reporting the numerical simulation results [51], they
recognized that residual strain fields can be accurately
correlated with the hardness value while residual stresses
are related to the size of the contact area. That is, a residual
compressive stress enhanced the pile-up and thus increased
the real contact area, while a residual tension stress
reduced the real contact area.

As a result, they found that, for a sharp indentation, a
new indentation parameter c2 that is the ratio of A (the
real contact area of a sample showing sink-in or pile-up)
to Anom (the nominal contact area directly calculated from
the indentation depth hmax without consideration of sink-in
or pile-up along the contact boundary) can be estimated by:

Aapp free,

Aapp R,

----------------- 1
σR

H
------–⎝ ⎠

⎛ ⎞  . =

Aapp free,

Aapp R,

----------------- 1
σR αsin

H
-----------------+⎝ ⎠

⎛ ⎞.=

Fig. 5. An example of a nanoindentation P-h curve shift due to a
residual stress [48].

Fig. 4. Shift of the indentation loading curve with change in stress
state.
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(13)

In this equation, σ is the yield strength (σY) for an
elastic-fully plastic material and the flow stress at a
given strain under a residual stress [σ(εR)] for a strain-
hardening material. As c2(εR, σR = 0) are close to unity
in most cases of interest (i.e., a significant pile-up or
sink-in cannot be developed without a residual stress),
Eq. (13) for an elastic-fully plastic material can be simplified
by applying the first-order approximation (i.e., σR/σY is
very small): 

(14)

If H ~3σY is assumed [45], the right term in Eq. (14) is
very close to that of Eq. (11) proposed by Suresh and
Giannakopoulos [50]. However, unlike Suresh and
Giannakopoulos’s approach, Carlsson and Larsson did not
set the normal stress component to zero, and instead,
they suggested using the apparent yield stress at the
corresponding representative strain [σ(εR)]. In the second
companion paper [52], Carlsson and Larsson experimentally
verified the applicability of Eq. (13), although they did
not provide a solution for a general residual stress state.

Model by Lee and colleagues
Lee and colleagues [53-55] modified the idea of Suresh

and Giannakopoulos [50] by interpreting the effect of the
equi-biaxial residual stress as the normal component in
the resulting deviatoric part of the stress tensor according
to the following equation:

Equi-biaxial stress  Mean stress  Deviator stress

(15)

The stress component parallel to the indentation axis in
the deviator stress term (σzz = -2σR/3) directly affects
the indentation-induced plastic deformation. Thus, they
found that the contribution of an equi-biaxial residual
stress on the normal indentation force PR can be defined
from the selected deviator stress component in Eq. (15):

(16) 

In this equation, PR is the contribution to the indentation
force caused by the residual stress and can be experimentally
measured as the difference in force P between stressed
and unstressed samples at a given displacement (see Fig. 4).

In subsequent investigations [56, 57], they extended
and validated their model towards a general residual stress
state by introducing the stress ratio (κ) as the ratio of
the minor in-plane residual stress component σR

y  to the
major in-plane residual stress component σR

x , i.e.
σR

y = κσR
x . Inserting the stress ratio k into the previous

equation, they obtained an expression:

(17)

It was found that the experiments were in good agreement
with this relation. Perhaps this model has the widest practical
application in the literature. This may be because instru-
mented micro-indentation experiment at high loads (instead
of nanoindentation) was mostly performed in their work,
and hence the relatively small curve shift in nanoindentation
could be enlarged.

It is noteworthy that there are limitations in the above
three models for sharp indentations; that is, the models
of Suresh and Giannakopoulos [50] and Carlsson and
Larsson [51, 52] are restricted to an equi-biaxial residual
stress; Lee et al.’s [56, 57] model provides a way to
consider the biaxial residual stress, but cannot describe
the well-known nonlinearity from tension to compression
[33, 34]. Very recently, Huber and Heerens [58] pointed
out these limitations and suggested by spherical indentation
simulations that the limitations might be overcome if
the ratio of the contact pressure for the residual stress
state to the contact pressure for the stress-free state is
analyzed based on the von Mises J2-flow criterion.

Models for Instrumented Spherical Indentation

Because the residual stress effect on a sharp indentation
is generally small as mentioned above, Taljat and Pharr
[59] considered whether residual stresses could be better
measured with a spherical indenter. Finite element
simulations on spherical indentations revealed a signif-
icant effect of an equi-biaxial stress on the indentation
load-displacement (P-h) behavior, but only in the ‘elastic-
plastic transition’ regime.

To examine whether or not the effect is experimentally
measurable, Swadener et al. [60] performed spherical
nanoindentation experiments on polished disks of several
aluminum alloys that could be stressed to prescribed levels
of equi-biaxial tension and compression (see Fig. 6).
They found that tensile stresses shift the nanoindentation
P-h curves to appreciably larger depths by enhancing
plasticity, while compressive stresses have the opposite
effect. Based on these observations, Swadener et al. [60]
developed two different methods for measuring the residual
stress using spherical indenters, as follows.

The first method is based on the fact that the measured
depth at which yielding occurs is affected by the stress
in a manner that can be analyzed by Hertzian contact
mechanics. For a spherical indentation in the purely elastic
deformation regime (i.e., for Hertzian contact), the mean
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contact pressure pm under the indenter during elastic
deformation can be related to the contact radius of the
spherical indenter, a, by:

(18)

where R is the radius of the indenter, Er is the reduced
elastic modulus determined from the Young’s modulus
E and Poisson’s ratio n of the specimen and the indenter.
The contact radius a can be determined by consideration
of the spherical indenter geometry:

(19)

where the contact depth hC for a spherical indentation
can be given as:

(20)

In Eq. (20), hmax can be directly measured from a P-h
curve, but the final depth of the contact impression after
unloading hf can be better obtained by curve fitting (second-
order polynomial) the upper 90% of the unloading curve.

To determine the mean contact pressure pm at the onset
of yielding, it is necessary to plot the measured elastic
recovery parameter (hf /hmax) against the non-dimensional
plasticity index, Era/σYR [46], at various indentation
loads. Since hf/hmax= 0 represents purely elastic deformation,
the plasticity index at hf /hmax = 0 signifies the onset of

yielding and is used to determine the contact radius at
the yielding point a0. Both numerical and experimental
analysis have shown that a nearly linear relationship
exists between hf/hmax and log(Era/σYR) over a wide range
of elastic-plastic transition. In Fig. 7, an example of the
linear relation experimentally obtained by Olivas et al.
[61] is shown. Thus, by extrapolating the discrete data
set of log(Era/σYR) to hf/hmax = 0, one can obtain the
desired a0.

At the onset of yielding, Johnson [46] showed using
either the Tresca or the von Mises yield criterion that
the constraint factor C [in Eq. (10)] is 1.07 (often ~1.1).
When an equi-biaxial residual stress σR is present in
the material, Taljat and Pharr [59] have shown by finite
element analysis (FEA) that the onset of yielding is
determined by the superposition of the biaxial and Hertzian
stresses. As long as yielding initiates below the surface
along the axis of symmetry, Eq. (10) can be rewritten as:

(21)

where pm is positive and σR is positive (or negative) for
tension (or compression). Combining Eq. (18) and (21):

(22)

Therefore, if σY is given, the residual stress σR can be
determined by the measurement of (Era0/σYR) by the
extrapolation method mentioned above. However, the
difficulties in application of this method are that the σY

of the material should be known independently and that
data has to be extrapolated outside the range of experimental
accessibility. Also, this method may need a very large
indenter radius in the experiments.

Swadener et al.’s [60] second method is based on
their interesting empirical observation of the relationship
between the mean contact pressure pm and the non-
dimensional plasticity index (Era/σYR). Since Er and σY

are material constants, their observation can be simplified
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Fig. 6. Schematic illustration of axi-symmetric bending apparatus [60].

Fig. 7. An example to show the variation in the elastic recovery
parameter with the non-dimensional plasticity index [61].
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as shown in Fig. 8 [62]. In this figure, data for 2024-T3
aluminum are plotted as the mean contact pressure, pm,
vs. the normalized contact radius, a/R. At a given equi-
biaxial stress, the pressure steadily increases with a/R,
as would be expected since increasing a/R corresponds
to driving the indenter in to greater depths. However, the
feature of interest is that the plots are vertically shifted
by an amount very close to the relative level of the applied
biaxial stress. This observation suggests that for a specimen
with a residual stress, Eq. (10) should be rewritten as:

(23)

If the variation in (Cσf) with (Era/σYR), or simply (a/
R), can be established by experiments in a reference
material in a known stress state, then σR can be determined
from measurements of the indentation contact pressure
pm. From a careful analysis of their experimental data,
Swadener et al. [60] concluded that the above two methods
can be used to measure residual stresses to within 10-20%.
Recently, Olivas et al. [61] reported that the surface
residual stress in SiC particle-reinforced Al matrix
composites can be successfully estimated by using the
first method explained above.

Other Recent Studies Using Numerical 
Simulations

In addition to the theoretical models reviewed above,
some research has applied numerical simulations and
fitted these data to establish the influence of a residual
stress on instrumented indentation behavior [63-69].

Chen and co-workers [63] performed finite element
simulations of sharp indentation behavior systematically
to analyze the effects of both the ratio of the in-plane
residual stress to the yield strength, σR/σY, and the reciprocal

yield strain, E/σY, on the hardness H, the stiffness S (see
Fig. 2), and the work of plastic deformation  .
It was found that the normalized hardness is essentially
independent of residual stress when E/σY > 300, but when
E/σY < 300, a tensile residual stress enhances the plastic
flow and decreases the hardness. The normalized stiffness
was significantly increased (or decreased) by the tensile
(or compressive) residual stress, but only when E/σY < 30.
For E/σY > 30, the normalized stiffness is invariant (~1.1).
The normalized plastic work appears to have a wide
spread for both σR/σY and E/σY. Based on the results,
Chen and co-workers proposed an algorithm of reverse
analysis to extract σR , σY, and E from the known single
P-h curve (i.e., information about hardness, stiffness, and
the plastic work), which may make it possible to estimate
the residual stress without the requirement of a stress-
free reference sample. Since their first study [63] was
restricted to an equi-biaxial stress state and elastic-fully
plastic solids, Chen and co-workers have attempted to
extend their approach to a uni-axial stress state [64] and
to strain-hardening materials [65].

In contrast to other simulation studies, Xu and Li [66-67]
have mainly focused on the equi-biaxial residual stress
effects on the ‘unloading’ behavior of nanoindentation.
Fig. 9 shows the variation in the shape of the unloading
curve for an elastic-fully plastic material having E/σY = 100
[66]. In the figure, a compressive residual stress increases
the elastic recovery ratio of he (= 1 − hf) to hmax while a
tensile residual stress reduces the ratio. From extensive
finite element simulations, it was revealed that there is
a nearly linear relationship between the he /hmax and σR/σY,
and its slope is only dependent on the E/σY ratio but
independent of the strain-hardening behavior. Oppositely,
the slope of the linear relation between the contact area
ratio A/Anom (where A is the real contact area and Anom

is the nominal contact area calculated from the indentation
depth according to the indenter geometry; this ratio was
defined as c2 by Carlsson and Larsson [51,52]) and σR/σY

is independent of the E/σY ratio, but dependent on the
A/Anom ratio. Based on these above relations, Xu and Li
[67] proposed a coupled nanoindentation-bending method
for determining the residual stress in a mechanically
polished fused quartz beam. Although they emphasized that
this method does not need to use any stress-free reference
sample, the need for a bending jig and relatively complex
specimen geometry may restrict its practical application.

Concluding Remarks

In this paper, research on the residual stress measurements
using instrumented indentation has been reviewed. Now,
there have been many studies in which successful appli-
cations of the technique are reported. Although applying
instrumented indentation for that purpose has clear
advantages due to the nature of the technique as a simple
non-destructive/mechanical test, there are some issues
still remaining unresolved.

pm σR Cσf=+

Wpl P hd
0

hmax
∫=

Fig. 8. Dependence of the mean pressure on m the normalized
contact radius, a/R, for indentation of 2024-T3 aluminum. Biaxial
stress influences are manifested as vertical shifts of the curves [62].
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First of all, many methods reviewed here require the
need for a stress-free reference sample. The reference
sample should have a microstructure almost identical to
the test specimen. In reality, this may be difficult to achieve
in many cases, especially in a material having a significant
microstructural gradient. Lepienski et al. [62] pointed out that
a stress-free reference sample for a thin film system is very
hard to be obtained. This is because only annealing can relax
the residual stresses of a thin film, but it can also change the
microstructure and thus the intrinsic mechanical properties.

Another practically important issue is that the current
indentation methods cannot be applied to a material
showing a strong dependency of the residual stress on its
direction while the indenters basically give an average
response of the surface residual stress. Note that residual
stress states determined by current instrumented indentation
techniques are mostly restricted to equi-biaxial or uni-
axial stress. Although some models [56] provide general
residual stress solutions, the stress ratio k should be
known independently. Some efforts have been given to
obtain information about the stress-directionality by
measuring the direction-dependency of pile-up height
[70], this way necessitates the careful observation of the
indentation morphology. Very recently some attempts
have been made using an asymmetric Knoop indenter
[71], but the method has not been fully established yet.

Finally, as Lepienski et al. [62] proposed, how to properly
consider the influence of both the surface roughness and
the substrate on the residual stresses in a thin film system
is also an issue to be solved in future.
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